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1 INTRODUCTION 

We would like to make an estimation of area uncertainty based on an 

uncertainty of a point. We will study different properties of polygons which 

represent parcels in real world. For basic mathematical analysis we will first 

study triangles because all other polygons can be studied as an analogy to 

them, and they represent the simplest of all polygons. 

The general idea is that the position of the vertices of the polygon is not 

accurate but uncertain and distributed according to some distribution. To 

make a good approximation of the real world uncertainty we picked two-

dimensional, radial symmetrical Gaussian distribution (normal distribution). 

An example for three different triangles can be seen on Figure 1. The 

uncertainty of any vertex is an input parameter and as output we will study 

area uncertainty (that can depend on area or perimeter) and limits within our 

model is a good description. 

 

Figure 1: Different triangles and radial symmetrical normal distribution of 

uncertainty of a point around vertices 
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2 MATHEMATICAL BACKGROUND 

 

Figure 2: Triangle with sides and vertices 

 

We will use some basic mathematical properties of a rectangle: area A  

� � 12 
����� � ��� � ����� � ��� � ����� � ���� (1) 

and perimeter p  

� � � � � � � � ���� � ���� � ��� � ���� � ���� � ���� � ��� � ���� � ���� � ���� � ��� � ���� (2) 

where ��, �� are the coordinates of vertices and a, b, c are the sides of the 

triangle as it can be seen on Figure 2.  

Area uncertainty of a polygon can be defined analytically [1] as  

���2 � 14� ∆�"�1,"�12 � ∆�"�1,"�12 $ �02
�

"�1  
(3) 

where σ% is the uncertainty of a vertex (we assume that it is the same for all 

vertices), and (��, ��) are the exact values of the coordinates. In case of 

triangle the above equation can be simplified into  

���2 � 14� &�3 � �1(2 � ��3 � �1�2 � &�1 � �2(2 � ��1 � �2�2 � &�2 � �3(2 � ��2 � �3�2$�02�
"�1  

(4) 



Uncertainty of LPIS data or how to interpret ETS results 

  11 

3 NUMERICAL ANALYSIS - STUDY OF 
TRIANGLES 

We want to compare analytical area uncertainty (4) with numerical area 

uncertainty that we calculate from the distribution of vertices. For each 

triangle we perform Monte Carlo simulation - we randomly pick a point 

around each vertex according to normal distribution N times. For each index 

i we join the three randomly picked points into a triangle and calculate area 

and after having N values for area we can calculate area distribution and area 

uncertainty. We repeat this for M different triangles. 

The interval where we pick points is limited to [0, a], a = 1 and we choose N 

= 105 and M = 1000 unless differently said. For vertex uncertainty σ
0
 we 

choose σ
0
/a = 0.01. 

The area distribution for one particular triangle can be seen on Figure 3. The 

red line represents the average area value (�̅), which is the same as the area, 

calculated from the exact value of vertices A [equation (1)]. On Figure 4 we 

can see the distribution in a histogram form. We can see that the area 

distribution is also a normal distribution. Numerical area uncertainty - σN - can 

be interpreted as the standard deviation of this distribution. 

 

 

Figure 3: The distribution of numerically calculated areas around analytical area 

(red line) 
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Figure 4: Histogram of the distribution - it is the normal distribution and the 

standard deviation corresponds to analytical area uncertainty [equation (4)] 

3.1 Area uncertainty dependency on 
area 

We would like to know what area uncertainty σN depends on. First we look at the 

correlation between area uncertainty and area on Figure 5. We can see that 

area uncertainty is limited downwards - when the area is large enough we 

can not expect uncertainties to be small; but at one particular area we can 

get many different values of uncertainties. On Figure 6 we see area 

uncertainty squared - �*� - here too we can see the bottom line but nothing 

specific can be said about area uncertainty at a given area. 

It can be easily seen that we get the same result if one side of a triangle is 

parallel to x axis. From now on we will study triangles, defined with 

vertices {{0, 0}, {x
2
, 0}, {x

3
, y

3
}} unless otherwise stated. From Figures 

Figure 5, Figure 6 and Figure 7 we can see that the area alone is not a very 

good parameter when studying general shapes of triangles (or other 

polygons). At the same area values we can get many different values of area 

uncertainties. We can assume that the shape of the triangle could also be an 

important property to study. 

However, if we observe relative area uncertainty σ/A, we can see the potential 

trend - Figure 7. For smaller areas we have big relative area uncertainty 

(REA) and as the area gets larger the relative area uncertainty gets smaller. 

This result will be studied in much more detail on the case of 3 rectangles 
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Figure 5: Area uncertainty dependency on area - σA(A) 

 

Figure 6: The square of area uncertainty dependency on area - �+� (A); not much 

can be said about the correlation of A both, at one particular area we can have 

many values of uncertainty 
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Figure 7: relative area uncertainty dependency on area is a power law. All 

variables are represented in non-dimensional form 

3.2 Area uncertainty dependency on 
perimeter 

On Figure 8 we can see the area uncertainty dependency on perimeter of 

the triangle σ(p). The trend is limited between two linear borders that can be 

interpreted as two limit shapes of triangles - equilateral triangle and a 

special type of isosceles triangle that has one side much shorter than the 

other two sides. 

Analytically we can see that from equation (4): 

��,-."/�0,1�/� � 23��4 �% � 23��36 �% � �2√3�% 

��"565�,/,5� � 22��4 �% � 2��8 �% � �2√2�% 

where in the equilateral case we insert p = 3a and in the isosceles case p = 2a 

(the short side being practically 0). The bottom border are the equilateral 

triangles, the upper border the isosceles triangles. 
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Figure 8: Area uncertainty dependency on perimeter: it is limited between two 

linear borders, the upper representing the isosceles triangles and the lower 

representing the equilateral triangles. All variables are represented in non-

dimensional form. 

Next thing we can observe is how area uncertainty depends on area at a 

constant perimeter. We believe this will give us some new information about 

an impact of the shape of a triangle on area uncertainty. For one particular 

triangle we can see the behaviour on Figure 9. The area uncertainty is 

smallest at the biggest area, at small areas we have two borders: the upper 

and the lower. 

From all cases we can find out the ones with the smallest area uncertainty 

and we can draw a few - Figure 10. We can see these are the triangles who 

are shaped like equilateral triangles or are similar to equilateral triangles. 

The same can be done for the case of small area and great area uncertainty - 

we look at the triangles, represented by the points in the upper left part of 

graph from the Figure 9. They are shown on Figure 11. As we see these are 

the ones, similar to isosceles triangles with one side much shorter. 
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Figure 9: Area uncertainty dependency on area at constant perimeter; the smallest 

uncertainty belongs to the triangles with the biggest area - these are the 

equilateral-like ones; the biggest uncertainty belongs to another special type of 

triangles - isosceles-like with very small angles between the longer sides. 

 

Figure 10: Triangles with the smallest area uncertainty - the ones that lie on the 

right side of the graph from Figure 6 - they are similar to equilateral triangles. 



Uncertainty of LPIS data or how to interpret ETS results 

  17 

 

Figure 11: Triangles with the biggest area uncertainty - they are similar to 

isosceles triangles with one side much shorter than the other two. 

We can observe the borders in more detail; for that purpose we do not 

generate the triangles randomly but we observe only equilateral and 

isosceles triangles - we want to learn more about convergence to analytical 

borders. On Figure 12 we can see the convergence for an interval of small 

ratios vertex uncertainty/side (�0/a ∼ 0.01). The special case of isosceles 

triangle was generated with the ratio between the shorter and the longer side 

k = 10. We can see that the convergence is good. 

 

Figures Figure 12, Figure 13, Figure 14: Convergence to the borders of 

equilateral triangle (green line) and isosceles triangle (red line): the 

dependency of the area uncertainty on perimeter - σ(p); (Figure 12) small 

ratio �0/�		~	0.01; (Figure 13) bigger ratio �0/�		~	0.1; (Figure 14) large 

ratio �0/�		~	0.5; a is the size of the side. 



Uncertainty of LPIS data or how to interpret ETS results 

  18 

 

Figure 12: Small ratio  �%/�		~	0.01 

 

Figure 13: Bigger ratio  �%/�		~	0.1 
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Figure 14: Large ratio  �%/�		~	0.5 

Now we enlarge the uncertainty of the vertices on ratio �0/�		~	0.1. – Figure 

13. We can see that the equilateral triangles still converge, but the isosceles 

are already under the limit of convergence. We can also see that for small 

values of �/�% the numerical model isn’t good anymore. If we numerically 

calculate uncertainty with statistics from Monte Carlo we can never get to 

uncertainty that would equal to zero (even if the sides are very small and 

analytically uncertainty limits to zero). That can be even better seen on 

Figure 14, where the ratio �0/�		~	0.5 which is quite large. 

We can get an analog information if we observe when numerically calculated 

area (the average of all triangles obtained with Monte Carlo) starts to differ 

from the analytical area. On Figure 15 we see this happens when the ratio 

between perimeter and area is �/�% 9 10. 
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Figure 15: The difference between numerically and analytically calculated area 

that depends on perimeter 

Practically this explains at which ratio �/�% we can no longer trust the 

numerical calculation. The red points represent the equilateral case, the green 

ones isosceles. We can see this happens at ratio �/�%~10 - when uncertainty 

of a vertex is one third of a side of a triangle (in case of equilateral triangle). 

Based on this result we will only use sides greater than 3�% in future 

simulations. 

3.3 Uncertainty of uncertainty 
We would like to know how uncertain is area uncertainty. We know that area 

uncertainty represents the standard deviation of the area distribution. Now 

we want to see how the area uncertainty changes with the number of 

triangles included in a Monte Carlo simulation. 

On Figure 16 we can see how the average area uncertainty behaves as we 

make M, the number of triangles, greater. When M is small, the distribution 

is not well defined and area uncertainty changes its value a lot; when M gets 

bigger, the numerically calculated uncertainty converges towards the 

analytical value of area uncertainty [equation (4)]. On Figure 17 we can see 

the uncertainty of the area uncertainty – this too at the small number of 

triangles changes a lot but than converges. Another thing we can observe is 

the distribution of the area uncertainty – Figure 18, which is also normal. 

From all these we can conclude that the uncertainty of the area uncertainty is 

a standard deviation of area uncertainty. 
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Figure 16: The convergence of area uncertainty towards the analytical value when 

M – the number of triangles in Monte Carlo simulation – gets bigger 

 

Figure 17: The uncertainty of area uncertainty. 

Both examples (Figures Figure 15 and Figure 16) are done for one randomly 

chosen triangle. 
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Figure 18: The distribution of area uncertainty is also a normal distribution and 

there- fore the uncertainty of area uncertainty can be interpreted as a standard 

deviation of uncertainty. 

3.4 Buffer analysis 
Until now we have analyzed area uncertainty based on vertex uncertainty. 

Another perspective is the buffer analysis. For the width of the buffer we 

take the same value as we usually took for the uncertainty of the vertex, σ
0
. 

Inside and outside of the triangle we draw the buffer as it can be seen on Figure 

19. 

 

 

Figure 19: Triangle with an outer buffer (blue line) and inner buffer (green line) 
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We will observe two variables: buffer area AB, which is the area of the outer 

and inner buffer, and full area, that is the area of the triangle together with the 

area of outer buffer, AF. We will compare buffer area AB with area 

uncertainty σA and full area AF with the average area A of the triangle. To do 

that we will observe the correlation between variables. For the calculation of 

σA and A we still use Monte Carlo simulation - for each of the M triangles we do N 

permutations while buffer is calculated only once for each of M triangles. 

On Figures Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure 

25 we can see the comparisons for three different ratios σ
0
/a. On Figure 20 

we see the correlation between area uncertainty σA and buffer area AB, 

corr(σA, AB) at σ
0
/a = 0.01. On Figure 22 we observe the same variable, just 

with ratio σ
0
/a = 0.1 and on Figure 24 σ

0
/a = 0.5. From these Figures we see 

something similar to what we have seen on Figures Figure 8, Figure 12, 

Figure 13 and Figure 14 - there exists a trend, limited between two limit 

cases of triangles which are shaped as equilateral triangle and isosceles 

triangle. At large ratios σ
0
/a that correspond to large buffer width we can see 

that we no longer have the linear trend. 

On Figures Figure 21, Figure 23 and Figure 25 we see the correlation 

between average triangle area A and full buffer area AF . At small ratios σ
0
/a 

the correlation is linear but when the ratio (and buffer width) gets bigger, we no 

longer have the linear trend. That makes sense - when the buffer area is 

comparable to triangle area, some small values of area can never be 

obtained. 

Figures Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25: 

Correlation between area uncertainty σA and buffer area AB – Figures Figure 20,  

Figure 22 and Figure 24; correlation between full area AF (outer buffer + 

triangle) and average triangle area �̅ – Figures Figure 21, Figure 23 and Figure 

25; from top to bottom we change the ratio between the point uncertainty 

and the side of a triangle - σ
0
/a = 0.01 for Figures Figure 20 and Figure 21, σ

0
/a = 

0.1 for Figures Figure 22 and Figure 23, σ
0
/a = 0.5 for Figures Figure 24 and Figure 

25. 
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Correlation between area uncertainty σA                             

and buffer area AB 

Correlation between full area AF                                 

(outer buffer + triangle) and average triangle area :; 

 

Figure 20: Correlation between area uncertainty and buffer 

area; σ
0
/a = 0.01 

 

Figure 21: Correlation between full area and average triangle 

area; σ
0
/a = 0.01 

 

Figure 22: Correlation between area uncertainty and buffer 

area; σ
0
/a = 0.1 

 

Figure 23: Correlation between full area and average triangle 

area; σ
0
/a = 0.1 
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Figure 24: Correlation between area uncertainty and buffer 

area; σ
0
/a = 0.5 

Figure 25: Correlation between full area and average triangle 

area; σ
0
/a = 0.5 

From Figures 20, 21, 22, 23, 24 and 25 we can see that buffer is a variable, 

correlated with variables we have used so far - average area A and area 

uncertainty calculated from vertex uncertainty σA  - but it does not give us 

new information about the problem of area uncertainty. 

3.5 Effective area uncertainty 
Until now we have calculated area uncertainty as standard deviation - with an 

iteration 

�+ � 21� ��� � �̅�*  
(5) 

Besides this uncertainty we can also look at the effective uncertainty - the only 

difference is that now in iteration we do not observe the difference between 

temporary and average area value but the differences between the temporary 

and analytical area value. 

�<== � 21���� � �+*�*  

 

(6) 

On Figure 26 we can see σeff and analytically calculated uncertainty σAN 

[equation (4)]  

- they both depend on the length of a side a. We study this on the case of 

isosceles triangle with a constant perimeter p=2 and ratio vertex 

uncertainty/side σ
0
/a = 0.01. Analytical uncertainty is the concave curve, σeff is the 

one that differs from it (red points). The best similarity is at minimum of both 

uncertainties, the worst is on the borders of the interval, at very small and 

very big a/σ
0
. This result is the same as things discovered so far - the most 

problematic (the ones with the biggest area uncertainty) are those (isosceles) 

triangles which have one side very short or very long - at a → 0 the ones that 

can be seen on Figure 11, at a → p/2 the ones with a large obtuse angle between 

equally long sides. The smallest uncertainty is at a = p/3, which means 

equilateral triangle. 

On Figure 27 we see the difference between numerically calculated area 

from analytically calculated area, on Figure 28 we can see the absolute 

difference between both areas ∆A = ANUM − AAN . In this example too the biggest 

difference is on the borders, in case of very small or very big angles at the top of 

isosceles triangles. 
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Figure 26: Effective uncertainty σeff (red curve) in comparison to analytically calculated 

uncertainty σAN (black curve) for the case of isosceles triangles with a side a and constant 

perimeter p/σ
0
 = 200 

 

Figure 27: Comparison of numerical (red line) and analytical area (black line) 

 

 

Figure 28: The difference between both areas. 
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4 NUMERICAL ANALYSIS - STUDY OF 
RECTANGLES 

So far we have seen some properties about area uncertainty from the study of 

triangles. Now we would like to compare some results with the study of 

rectangles, first in general and then for some specific cases in more detail. 

We use the exact some procedures and formulas for simulation. 

On Figure 29 we can see how area uncertainty depends on area. We can see 

that in general absolute area uncertainty grows with area and that at one 

particular area we can have different values of area uncertainty. Figure 29 is 

similar to Figure 5 - area uncertainty dependency on area for triangles. 

 

Figure 29: Normalized area error (area uncertainty) dependency on normalized 

area for a rectangle; σ - area uncertainty, A -area, �% - vertex uncertainty; In 

general, area uncertainty grows with area; at one particular area A/�%� we still can 

have different values of σ and the small ones correspond to the most regular shape 

- square like and the bigger ones correspond to elongated rectangles. 

The same comparison can be done for relative area uncertainty σ/A - Figure 

30. Here we can also see the power law trend. Figure 30 is similar to Figure 7. 
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Figure 30: Relative area error dependency on normalized area for a rectangle; σ - 

area uncertainty, A -area, σ
0
 - RMSE; for parcels, smaller than A/�%� = 1000 - 

that is if σ
0
 = 1m, A = 1000m2 - relative area error is more than 10%. At one 

particular normalized area A/σ
0
 we still can have different values of σ/A and the 

small ones correspond to the most regular shape - square like. 

Let's compare the dependency of area uncertainty on perimeter - Figure 31. 

We again have two borders - the upper represents the elongated rectangle 

and the lower represents the square - just like in the case of triangles where 

the upper border was an equilateral triangle and the lower border was an 

isosceles triangle. Figure 31 is similar to Figure 8. 
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Figure 31: Absolute normalized area error (area uncertainty) dependency on 

perimeter for a rectangle; σ - area uncertainty, o -perimeter, σ
0
 - RMSE; σ grows with 

perimeter between two borders - the upper border corresponds to an elongated 

rectangle and the lower to a square; all rectangles fall in between. 

Another thing we compare is the behaviour of area uncertainty at constant 

perimeter and different areas. In the case of triangles we have seen the shape 

on Figure 9. We remember that the smallest area uncertainties corresponded 

to the regular-like shape - equilateral triangle and the biggest uncertainties 

corresponded to the most irregular shape - elongated isosceles triangles and 

ones similar to them. Area uncertainty dependency on area at a constant 

perimeter for rectangles can be seen on Figure 32. This time both graphs 

are a bit different - on Figure 32 we have just one linear trend while on 

Figure 9 we had a greater area - linear trend on top and a curve on bottom 

and everything in between in the middle. For triangles the linear trend 

corresponded to isosceles triangles with small angle between equal sides and 

the curve corresponded to isosceles triangles with big angle between equal 

sides. Here, in case of rectangles, we do not have two kinds of elongated 

rectangles - rectangle can either be elongated with large ratio between both 

sides or more square-like. That is why we have only one trend on Figure 32. 
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Figure 32: Absolute normalized area error (area uncertainty) dependency on area 

at a constant perimeter for a rectangle; σ - area uncertainty, A -area, σ
0
 - RMSE; this 

graph shows dependency on how elongated the rectangle is; all rectangles have 

the same perimeter here and the ones with the smallest σ and the biggest A are squares, 

the ones with the biggest σ and the smallest A are most elongated. Between these two limits is a 

linear trend. 

On Figure 33 we can see the relative area uncertainty that depends on area at 

constant perimeter. 

 

Figure 33: The same as the above graph, just for relative area error - here we can't 

see the linear trend, so for the study of behaviour at constant perimeter it's better 

to observe the absolute area uncertainty. 

To sum up, rectangles have the same or very similar area uncertainty 

properties as triangles. 
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5 3 CASES OF RECTANGLES 

Now we want to study three special cases of rectangles which have the same 

area but different shapes. So far we have observed variables in general, now 

we want to do some number comparison. Our hypothesis is that area 

uncertainty largely depends on the shape, not only on area (as we have seen 

on Figures Figure 5, Figure 6, Figure 7, Figure 29 and Figure 30 we can 

have many different values of area uncertainty at one particular area when 

we observe triangles or rectangles in general). 

Three cases are: long rectangle, that has ratio between longer and shorter side 

a/b = 30, middle rectangle, with ratio a/b = 10 and square, with a = b. 

 

 

Figure 34: Three types of rectangles: (a) long rectangle, a/b = 30; (b) middle 

rectangle a/b = 10 and (c) square with a = b. They all have the same area. 

We will scan a whole interval of areas, from a few 10 m2 to two million m2. 

The only limit is the any side of any rectangle should not be shorter than 

RMSE or vertex uncertainty times three (3σ
0
). To make information more readable 

we show area scales in ha= 105m2. 

We will study six types of uncertainties: 

− DOP (digital ortophoto): the only parameter is uncertainty of a vertex, 

RMSE. We estimate it on 1m. Set of parameters is (1m, 0, 0). 

− DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused 

by digitalization. Set of parameters is (1m, 0.4036 m, 0). 
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− DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by 

digitalization and uncertainty caused by interpretation. Set of parameters 

is (1m, 0.4036 m, 1m). 

− ETS1: comparison of two cases, first is DOP + DIG + INT with 

parameters (1m, 0.4 m, 1m), second is DOP + DIG with parameters 

(2.5m, 0.4 m, 0m) - in the second case we take bigger RMSE. 

− ETS2: comparison of two versions of the same case with parameters (1m, 

0.4 m, 1m) for the first version and (1 m, 0.4 m, 0) for the second version. 

Because DOP uncertainty is the same in both versions we don't use it in 

calculation. 

− OTS: comparison between DOP and on the spot control; first case with 

parameters (1m, 0.4 m, 1m) and second case with parameters (0.1948 m, 

0 m, 0 m). 

In first three types (DOP, DOP + DIG and DOP+ DIG + INT) we have only 

one set of parameters, in last three types we have two sets of parameters - 

that is because in first three cases we calculate area uncertainty directly 

while in last three cases we compare two digitalizations. 

5.1 Model 
Let's look at the six above types in more detail: 

In the first case (DOP), to simulate the uncertainty of a vertex we take 

coordinates of an exact polygon (rectangle) and perform Monte Carlo on 

them. We calculate the area and the uncertainty of the area for each 

polygon. The result is the distribution of area that has a Gaussian shape - 

normal distribution. The average area is limiting towards the analytical 

value of area [equation (1)] as N, the number of times Monte Carlo was 

performed, grows. 

For digitalization uncertainty (DIG) we used results from authors [2], 

specifically the relationship between the distribution of error and the 

turning angle. The distribution can be transformed into normal distribution 

with σ = 1.58 for angles π/2, and for digitalization 1:1000 this gives 0.4036 m. 

Because RMSE and digitalization uncertainty are not correlated, in the DOP 

+ DIG case we can again use normal distribution with � � √1 � 0.4036� � 1.078. 

Uncertainty caused by interpretation (INT): this time we estimate the error 

around sides of a rectangle. Again, we randomly choose from normal 

distribution with σ = 1, but only once for all vertices. In this way we get an 

envelope around a rectangle (inside or outside). 

For ETS we calculate relative error: now we want to compare two 

digitalizations. We run Monte Carlo twice and look at the difference between 

both results. Average area and average uncertainty of area in both cases 

should limit towards the same value (the exact value of the area) but if we 
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look at the difference between digitalizations, we can get an estimate for 

relative area error. 

Mathematically, we define relative area error as 

∆� �2 � �1�1 � �2�1 � 1 (7) 

where A
1
 is the area of the rectangle in the first case and A

2
 is the area in the 

second case. 

In exact case, where A
1
 = A

2
, ∆ = 0. But in Monte Carlo A1

n
 and A2

n
 for 

the n-th try are probably not the same. We can calculate the uncertainty of 

relative area error by making a total derivative of the equation (7). 

?∆� ? @�� � ���� A � ? @���� � 1A � ?���� � ����� ?�� (8) 

From here, we get 

��∆� � 2 1��� ������ � �����B ������ (9) 

In other words, we have the probability distribution dP/dA
1
 for the first 

measurement and dP/dA
2
 for the second measurement; now we can 

calculate the probability distribution of the relative difference between them: 

?C? D�� � ���� D (10) 

The standard deviation of the above distribution equals to the expression (9); 

when we are performing Monte Carlo, we are calculating σ directly but results 

are the same as theory predicts. 

For OTS we use the same procedure as for ETS. 

5.2 Results 
We will look at the results for our three rectangles from Figure 20. We 

observe two things: how relative area error EF� � � �⁄  

depends on area and how "2 σ" interval depends on area."2 σ" is actually 

1.96 σ (reproducibility limit). We can see area uncertainty - "σ" interval and 

1.96 σ - "2 σ" interval on Figures Figure 35 and Figure 36 . "σ" interval 

includes 67% of all cases - Figure 35 and "2 σ" interval includes 95% of all 

cases - Figure 36. The expression relative area error means the same as 

relative area uncertainty. 
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Figure 35: Normal distribution of area for DOP type with "σ" and "2 σ" interval 

 

Figure 36: Normal distribution of relative difference of areas for ETS type with "σ" 

and "2 σ" interval 

On Figure 37 we can see the shape of REA(A). It is a power law and 

therefore hard to read for greater areas A. Because of that we will use 

logarithmic scales from now on, the results will be presented as linear 

functions. In order to make results more readable some data is collected also 

in tables. 
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Figure 37: Linear scale example for DOP - for larger areas it is hard to read 

details 

5.3 DOP 
On Figure 38 we see relative area error that depends on area. On Figure 39 

we see the "2 σ" interval. For small areas uncertainties are around 9% for 

square, 20% for middle rectangle and more than 30% for long rectangle. For 

"2 σ" scenario they are exactly 1.96 times value at "σ" at the same area. We 

can see that more elongated rectangles have much greater relative area error 

than squares at the same area. In Table 1 (first column) are listed areas (in 

ha) at REA = 3%, 5%, 7%. In Table 2 (first column) are listed areas where 

1.96 σ/A is 3%, 5%, 7%. 



Uncertainty of LPIS data or how to interpret ETS results 

  36 

 

Figure 38: DOP, REA; red line - long rectangle; green line - middle rectangle; blue 

line - square. 

 

Figure 39: DOP, "2 σ" interval; red line - long rectangle; green line - middle 

rectangle; blue line – square. 

5.4 DOP + DIG 
On Figure 40 we see relative area error that depends on area for DOP + DIG 

scenario. 
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Figure 40: DOP + DIG, REA; red line - long rectangle; green line - middle 

rectangle; blue line – square. 

On Figure 41 we see the "2 σ" interval. In Table 1 (second column) are listed 

areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (second column) are listed 

areas where 1.96 σ/A is 3%, 5%, 7%. 

 

Figure 41: DOP + DIG, "2 σ" interval; red line - long rectangle; green line - 

middle rectangle; blue line – square. 

5.5 DOP + DIG + INT 

On Figure 42 we see relative area error that depends on area for DOP + DIG 

+ INT scenario. On Figure 43 we see the "2 σ" interval. In Table 1 (third column) 
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are listed areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (third column) are 

listed areas where 1.96 σ/A is 3%, 5%, 7%. 

 

Figure 42: DOP + DIG + INT, REA; red line - long rectangle; green line - middle 

rectangle; blue line – square. 

 

Figure 43: DOP + DIG + INT, "2 σ" interval; red line - long rectangle; green line 

- middle rectangle; blue line – square. 

% DOP DOP+DIG DOP+DIG+INT 

3 0.22 0.26 1.16 

5 0.08 0.09 0.42 

7 0.04 0.04 0.21 
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3 1.125 1.31 5.86 

5 0.40 0.47 2.11 

7 0.21 0.24 1.04 

3 3.31 3.98 17.2 

5 1.20 1.41 6.18 

7 0.61 0.71 3.16 

Table 1: Area that has bigger relative area uncertainty than the percent on the left 

in ha = 105m2; Upper triplet: square; middle triplet: middle rectangle; lower 

triplet: long rectangle 

 

% DOP DOP+DIG DOP+DIG+INT 

3 0.85 1.00 4.48 

5 0.31 0.36 1.62 

7 0.15 0.18 0.83 

3 5.04 5.09 22.3 

5 1.83 1.83 8.11 

7 0.92 0.95 4.04 

3 14.9 14.9 66.26 

5 5.39 5.40 23.87 

7 2.71 2.77 12.18 

Table 2: Area that has bigger "2 σ" error than the percent on the left in ha = 105m2 

for "2 σ" interval (95%); Upper triplet: square; middle triplet: middle rectangle; 

lower triplet: long rectangle 

5.6 ETS1 
On Figure 44 we see relative area error that depends on area for ETS1 

scenario. On Figure 45 we see the "2 σ" interval. In Table 3 (upper half) are listed 

areas (in ha) at REA = 3%, 5%, 7%. In Table 3 (bottom half) are listed areas 

where 1.96 σ/A is 3%, 5%, 7%. 
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Figure 44: ETS1, REA; First (DOP, DIG, INT) = (1m, 0.4 m, 1m), Second (DOP, 

DIG, INT) = (2.5 m, 0.4m, 0) 

 

% Square Middle Long 

3 2.60 12.99 38.45 

5 0.93 4.66 13.83 

7 0.48 2.41 7.20 

3 9.86 50 148.37 

5 3.62 18.01 53.80 

7 1.80 9.17 2.35 

Table 3: Area that has bigger relative area uncertainty than the percent on the left 

in ha = 105m2 for ETS1 model. Upper half: REA - 1 σ interval (67%), lower half: "2 σ  

interval (95%) 
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Figure 45: ETS1, "2 σ" interval; First (DOP, DIG, INT) = (1m, 0.4 m, 1m), Second 

(DOP, DIG, INT) = (2.5 m, 0.4 m, 0) 

5.7 ETS2 
On Figure 46 we see relative area error that depends on area for ETS2 

scenario. On Figure 47 we see the "2 σ" interval. In Table 4 (upper half) are listed 

areas (in ha) at REA = 3%, 5%, 7%. In Table 4 (bottom half) are listed areas 

where 1.96 σ/A is 3%, 5%, 7%. 

 

% Square Middle Long 

3 0.96 4.87 14.45 

5 0.34 1.74 5.09 

7 0.17 0.88 2.61 

3 3.68 18.86 55.73 

5 1.31 6.77 20.04 

7 0.69 3.34 10.09 

Table 4: Area that has bigger relative area uncertainty than the percent on the left 

in ha = 105m2 for ETS2 scenario; upper half: REA - 1 σ interval (67%), lower half  "2 σ" 

interval (95%). 
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Figure 46: ETS2, REA; First (DOP, DIG, INT) = (0m, 0.4m, 1m), Second (DOP, 

DIG, INT) = (0m, 0.4m, 0m) 

 

Figure 47: ETS2, "2 σ" interval; First (DOP, DIG, INT) = (0m, 0.4m, 1m), Second 

(DOP, DIG, INT) = (0m, 0.4m, 0m) 

5.8 OTS 

On Figure 48 we see relative area error that depends on area for OTS 

scenario. On Figure 49 we see the "2 σ" interval. In Table 5 (upper half) are listed 

areas (in ha) at REA =3%, 5%, 7%. In Table 5 (bottom half) are listed areas 

where 1.96σ/A is 3%, 5%, 7%. 
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Figure 48: OTS, REA; First (DOP, DIG, INT) = (1m, 0.4m, 1m), Second (DOP, 

DIG, INT) = (0.195m, 0.0, 0) 

 

Figure 49: OTS, "2 σ" interval; First (DOP, DIG, INT) = (1m, 0.4m, 1m), Second 

(DOP, DIG, INT) = (0.195m, 0.0, 0) 

 

% Square Middle Long 

3 1.16 5.86 17.47 

5 0.42 2.11 6.35 

7 0.21 1.12 3.17 

3 4.48 22.45 66.514 

5 1.63 8.11 24.03 
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7 0.83 4.04 12.29 

Table 5: Area that has bigger relative area uncertainty than the percent on the left 

in ha = 105m2 for OTS scenario. Upper half: REA - 1 σ interval (67%), lower half: "2 σ" 

interval (95%); 

5.9 Comparison of REA and ”2 sigma” 
interval 

In previous tables we have compared areas at the same REAs or "2σ" intervals, 

now let's fix the area and compare REAs and "2σ" intervals. 

 

% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS 

Square 0.137 0.14 0.32 0.48 0.29 0.32 

Middle 0.31 0.32 0.73 1.09 0.65 0.74 

Long 0.54 0.59 1.24 1.86 1.13 1.24 

Square 1.00 1.07 2.28 3.38 2.06 2.29 

Middle 2.26 2.43 5.03 7.53 4.68 5.05 

Long 3.80 4.18 8.79 13.19 8.00 8.82 

Square 1.41 1.54 3.17 4.74 2.88 3.19 

Middle 3.16 3.41 7.17 10.71 6.57 7.19 

Long 5.55 5.85 12.35 18.6 11.29 12. 

Square 2.00 2.15 4.51 6.73 4.10 4.53 

Middle 4.48 4.86 10.17 15.24 9.22 10.21 

Long 7.65 8.41 17.5 26.11 15.88 17.54 

Square 4.46 4.76 10.04 15.15 9.21 10.08 

Middle 10.07 10.67 22.90 34.09 20.61 22.94 

Long 17.23 18.65 39.24 59.09 36.10 39.52 

Table 6: Comparison between different scenarios: REA at 100 ha (first - third line), 

2ha (4th - 6th line), 1 ha (7th - 9th line), 0.5 ha(10th to 12th line), 0.1 ha (13th to 

15th line) 

 

% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS 

Square 0.27 0.27 0.63 0.94 0.58 0.63 

Middle 0.61 0.62 1.44 2.13 1.28 1.44 

Long 1.06 1.15 2.43 3.66 2.22 2.45 

Square 1.97 2.10 4.47 6.63 4.04 4.49 

Middle 4.69 4.75 9.85 14.76 9.18 9.89 

Long 8.19 8.21 17.23 25.85 15.67 17.28 

Square 2.76 3.01 6.22 9.28 5.65 6.24 

Middle 6.68 6.68 14.04 21.00 12.88 14.10 

Long 11.39 11.47 24.20 36.46 22.14 24.30 

Square 3.91 4.22 8.84 13.19 8.03 8.88 

Middle 9.36 9.51 19.95 29.89 18.07 20.01 

Long 16.07 16.49 34.30 51.18 31.13 34.38 

Square 8.73 9.32 19.67 29.69 18.06 19.75 

Middle 21.01 20.90 44.89 66.81 40.40 44.96 

Long 35.97 36.55 76.9 115.81 70.76 77.46 
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Table 7: Comparison between different scenarios: "2 σ" interval at 100ha (first - 

third line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and 

0.1 ha (13th to 15th line) 

6 FURTHER EXAMPLES 

6.1 3 cases of rectangles - different 
parameters 

In previous chapter we have seen examples for all six types - DOP, DOP + 

DIG, DOP + DIG + INT, ETS1, ETS2 and OTS for one set of parameters, 

(DOP, DIG, INT) = (1 m, 0.4 m, 1m) and some variations of that in ETS1, 

ETS2 and OTS types. For each type there was a REA (or "1 σ") graph and "2 

σ" graph; in addition, some typical area values at 3%, 5%, 7% and some typical 

REA (relative area uncertainty) at A = 100 ha, 2 ha, 1 ha, 0.5 ha, 0.1 ha were 

listed. 

We would like to compare previous results with a little change in some 

parameters - only for a few representative graphs and numbers. 

− DOP: the only parameter is uncertainty of a vertex, RMSE = 0.2 m. Set 

of parameters is (0.2 m, 0, 0). 

− DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused 

by digitalization. Set of parameters is (0.2 m, 0.4036 m, 0). 

− DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by 

digitalization and uncertainty caused by interpretation. Set of parameters 

is (0.2 m, 0.4036 m, 1m). 

− ETS1: comparison of two cases, first is DOP + DIG + INT with 

parameters (0.2 m, 0.4 m, 1m), second is DOP + DIG with parameters 

(0.4m, 0.4036 m, 0) - in the second case we take bigger RMSE. 

On Figure 50 we see the linear scale example for DOP. If we compare it to 

Figure 37, we can see that REA at the same area is smaller in the case of 

DOP = 0.2m. 
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Figure 50: Linear scale example for DOP with RMSE = 0.2 m 

This is even more obvious if we look at the logarithmic scale - Figure 51 for 

DOP and compare it to DOP with RMSE = 1m - Figure 38. For instance, at 

A = 0.1 ha, REA ≈ 1.5% (square) for RMSE = 0.2 m, while at RMSE = 1m 

REA ≈ 4.5% (square). 

On Figure 51 we can see DOP + DIG, REA example for set of parameters 

(DOP, DIG, INT) = (0.2 m, 0.4 m, 0), on Figure 53 is a DOP + DIG + INT, 

REA example for set of parameters (DOP, DIG, INT) = (0.2 m, 0.4 m, 1m) 

and on Figure 54 is a DOP + DIG + INT, "2 sigma" example for the same set 

of parameters. On Figure 55 we can see ETS1 scenario, "2 σ" example with 

parameters (DOP, DIG, INT) = (0.2 m, 0.4 m, 1m) for the first case and (DOP, DIG, 

INT) = (0.2 m, 0.4 m, 0) for the second case. 

In Table 8 are listed relative area uncertainties for "2 σ" interval for the above 

examples. 
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Figure 51: DOP, REA for RMSE = 0.2 m; red line - long rectangle, green line - 

middle rectangle, blue line - square 

 

Figure 52: DOP + DIG, REA for RMSE = 0.2 m; red line - long rectangle, green 

line - middle rectangle, blue line - square 
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Figure 53: DOP + DIG + INT, REA for RMSE = 0.2 m; red line - long rectangle, 

green line - middle rectangle, blue line - square 

 

Figure 54: DOP + DIG + INT, "2 σ" interval for RMSE = 0.2 m; red line - long rectangle, 

green line - middle rectangle, blue line – square 
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Figure 55: ETS1, "2 σ" interval for RMSE = 0.2 m (first case) and RMSE = 0.4 m (second 

case); red line - long rectangle, green line - middle rectangle, blue line - square 

 

% DOP DOP+DIG DOP+DIG+INT ETS1 % DOP 

Square 0.05 0.12 0.56 0.57 Square 0.05 

Middle 0.12 0.27 1.27 1.30 Middle 0.12 

Long 0.21 0.48 2.18 2.23 Long 0.21 

Square 0.39 0.87 3.9 4.02 Square 0.39 

Middle 0.88 1.96 8.9 9.11 Middle 0.88 

Long 1.51 3.41 15.25 15.53 Long 1.51 

Square 0.54 1.21 5.64 5.75 Square 0.54 

Middle 1.22 2.77 12.64 12.87 Middle 1.22 

Long 2.08 4.80 21.7 22.08 Long 2.08 

Square 0.78 1.73 8.0 8.08 Square 0.78 

Middle 1.76 3.93 18.1 18.43 Middle 1.76 

Long 3.00 6.71 31.0 31.48 Long 3.00 

Square 1.68 3.76 17 17.54 Square 1.68 

Middle 3.79 8.62 38.30 39.52 Middle 3.79 

Long 6.60 14.86 66.95 68.20 Long 6.60 

Table 8: Comparison between different scenarios: "2 σ" interval at 100ha (first - 

third line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and 

0.1 ha (13th to 15th line). 

6.2 Shorter segments 
So far we have always studied rectangles (or triangles) with fixed number of 

vertices - 4 for rectangles or 3 for triangles. Does our simulation give 

different results if we add vertices to polygons - in analogy to the real world, 

is it better to make shorter segments? 
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On Figure 56 we can see an example of a rectangle with four original 

vertices (green points); on Figure 57 the red points are the added vertices. 

Now we perform Monte Carlo on all vertices, the old ones and the new ones 

and compare results. 

 

Figure 56: The original rectangle with four vertices 

 

Figure 57: Rectangle, transformed into polygon with shorter segments - the red 

points are the added vertices 

On Figures Figure 58, Figure 59 and Figure 60 we can see the comparison 

between two absolute area uncertainties - the green one represents the 

original rectangle and the red one the one with shorter segments. On Figure 

58 the segment is relatively long in comparison to a (on interval [0, a] we 

pick side length) - l/a = 0.8 and both uncertainties are practically equal. On 

Figure 59 the segment is middle length l/a = 0.5 and we can see that 

uncertainty is smaller. If the segment is much smaller than the side, like l/a = 

0.1 on Figure 60 we can see that area uncertainty obviously falls 

significantly. The segments also can not be too short - the same rule applies 

to them, two vertices must be at least at 3 σ
0
 distance. 

Figures Figure 58, Figure 59 and Figure 60: Comparison of area uncertainty 

for original rectangle (green points) and rectangle with segments (red 

points); length of segments (Figure 58) l/a = 0.8, (Figure 59) l/a = 0.5, 

(Figure 60) l/a = 0.1, where a is the length of interval from which we pick 

side length. 
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Figure 58: l /a = 0.8 

 

Figure 59: l/a = 0.5 
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Figure 60: l/a = 0.1 

Let's compare how shorter segments work for the 3 cases of rectangles. On 

Figure 61 we can see the comparison for DOP with RMSE = 1 m and 

segment length l = 30 m. The red line as usually represents long rectangle, 

the green line middle rectangle and the blue line square. The orange line 

represents long rectangle with segments, the turquoise line middle rectangle 

with segments and the violet line square with segments. 

First thing we can see is that REA for cases with segments is always smaller 

or at least the same as REA for cases without segments. Not only that - when 

we enlarge the sides of the rectangles, the length of the segment stays the 

same - that is why lines that represent segments fall much faster that the 

lines of the original rectangles. In case of square and middle rectangle we 

can see that both cases stay the same until some area - that is until both sides 

are shorter than the length of the segment. 
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Figure 61: DOP, REA with RMSE = 1m and segment length l = 30 m; comparison 

between the original rectangles and the ones with segments; red line - long 

rectangle, green line - middle rectangle, blue line - square, orange line - long 

rectangle with segments, turquoise line - middle rectangle with segments, violet 

line - square with segments. 

7 CONCLUSION 

In this study of area uncertainty we have looked at some properties on which 

area un- certainty depends on: area, perimeter, area at a constant perimeter 

etc. For simulation we used Monte Carlo method. First, we have made a 

general model for triangles where we learned that relative area uncertainty 

(REA) gets smaller when area gets larger but on the other hand at one 

particular area we can have many values of REA. This gave us the idea that 

area uncertainty maybe also depends on shape, not only on area value. We 

have looked at area uncertainty dependency on perimeter and from there we 

have seen that area uncertainty is limited between two special types of 

triangles: regular-like ones and isosceles-like ones with very small angles 

between sides of equal length. We have also checked the limit cases where 

convergence to these two borders is not true anymore and from there we 

have learned that the length of the side of a polygon should not be smaller 

than vertex uncertainty times three if we want our numerical model to give 

proper results. We have compared numerically defined area uncertainty with 

analytically and have concluded that they are most alike at regular shapes. 

We have done some buffer analysis but that did not tell us anything new. 

We have studied the same properties also for rectangles, the results were 

comparable. Again we have seen how much area uncertainty (absolute and 

relative) depends on shape. We have made a comparison for three cases of 
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rectangles and different input uncertain- ties - comparable to digital 

ortophoto (DOP), digitalization uncertainty (DOP + DIG), interpretation 

error(DOP + DIG + INT). Then we made three other types of calculating 

uncertainty - ETS1, ETS2 and OTS where we compared two digitalizations 

and observed the difference between them. For each of these types we have 

compared "1 σ" interval of distribution (equal to analytically calculated area 

uncertainty) and "2 σ" interval (reproducibility limit). At the end we have 

expanded basic model with adding vertices and results have shown we can 

make area uncertainty smaller with this procedure.  
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8 UNCERTAINTY COMPOSITION 

In real-life scenarios, more than one process can influence the measurement 

of a variable. Polygon area measurement, for example, is influenced by the 

uncertainty in the reference layer (digital ortho-photo), uncertainty in 

interpretation of the polygon border as well as uncertainty in the digitization. 

To arrive at the estimate of the area uncertainty given the contributions of 

different factors, we need to look at how the final error in area is constructed. 

The offset of the measured area is the sum of offsets due to the different 

contributions: 

?� � ?�� � ?�� � ?�� 

If each of the contributing errors is normally distributed around 0 with 

RMSE of σ1 , σ2 and σ3 respectively and if all the contributing errors are 

independent, then the estimate for the resulting standard deviation is: 

� � ���� � ��� � ��� 

9 UNCERTAINTY OF RELATIVE 
DIFFERENCE OF TWO 
MEASUREMENTS 

When we estimate the relative area error (RAE) from two measurements of 

the same polygon, we have to take the uncertainties of both measurements 

into account. The expression for RAE is straightforward: 

RAE	 � �A1 � A2��2 � �1�2 � 1 

Differentiating this expression with respect to both variables A1 and A2 

gives the following expression: 

dRAE	 � 1�2?�1 � �1�2� ?�2 � �1�2 @?�1�1 � ?�2�2 A. 
Assuming small errors, we can set A1 = A2 = A and write the expression for 

the uncertainty of the relative difference as: 

σRAE 	 � 2Mσ�1�1N2 � Mσ�2�2N2 � �σ�12 � σ�22� . 
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10 UNCERTAINTY OF POLYGON AREA 
DERIVED FROM POINT POSITION 
ERROR 

10.1 1. Area error produced by 
independent point position error 

The area of a polygon can be written as the sum of areas under individual 

line segments: 

� � 12����O� � ������O� � ���*
�P� � 12���O�	��

*
�P� � �� 	��O� 

Note that the indices in the expression should be wrapped cyclically when 

the last point of the polygon is reached. We can re-write this expression to 

expose only the terms involving xi and yi: 

� � 12 �…����R� � ��R��� � ��O��� � ����O� …�
� 12 �. . . �� 	���R� � ��O�� � �� 	���O� � ��R��. . . � 

Integration of the uncertain term for xi times its normal distribution (with σxi) 

yields the average contribution of the term to the area, which equals the term 

itself: 

S �x" � ∆�"�	&�"�1 � �"�1( 	 1√2U�xi 	exp Y� ∆�"22�xi2Z ?∆�"
∞

�∞
� �"	��"�1 � �"�1� 

This tells us that the mean area of the polygon with uncertain vertices will be 

the same as the area calculated from the mean vertex positions. In other 

words, area calculated from the mean vertex positions is an unbiased 

estimator of the true polygon area. 

To arrive at an estimate of the standard deviation of the area measurement, 

we have to integrate the square of the area difference between the uncertain 

and the true polygon. We square the whole sum that is needed to compute the 

area, but most of the terms involve ∆xi or ∆yi in the first power, and can be 

removed due to the symmetry of the normal distribution: 

�… � ��" � Δx"���"�1 � Δy"�1 � �"�1 � Δy"�1� � ⋯ � �"��"�1 � �"�1��2� ⋯� Δx"2���"�1 � �"�1�2 � Δy"�12 � Δy"�12� � ⋯ 

Integral over ∆xi then yields: 



Uncertainty of LPIS data or how to interpret ETS results 

  57 

S Δx"2���"�1 � �"�1�2 � Δy"�12 � Δy"�12� 1√2U��i exp Y� Δ�"22��i2Z ?Δ�"
∞

�∞ � �xi2 M&�"�1 � �"�1(2 � Δy"�12 � Δy"�12N	 
The term with y coordinates of the neighbouring points represents the 

independent contribution of the ordinate xi to the uncertainty of the polygon, 

while the two terms containing the neighbouring points’ deltas describe the 

effect of the interaction of the neighbouring points on the measured area 

uncertainty.  

All these terms will be further integrated to account for uncertainty in all 

other points, and finally produce the following expression for the total area 

uncertainty (factor 1/2 comes from the fact that the terms from the 

expression in the sum will be included at other indices): 

��2 � 14 _ �xi2 Y&�"�1 � �"�1(2 � 12 &�yi�12 � �yi�12(Z�

"�1
	

� �yi2 Y��"�1 � �"�1�2 � 12 ��xi�12 � �xi�12�Z	. 
In case of isotropic error (σxi= σyi= σi), this simplifies to: 

��2 � 14 � �i2 M&�"�1 � �"�1(2 � ��"�1 � �"�1�2 � �i�12 � �i�12N�
"�1 	. 

In case all points have the same error (σi= σ) the expression becomes: 

��2 � �24 � 2�2 � &�"�1 � �"�1(2 � ��"�1 � �"�1�2�
"�1 . 

This tells us that the variance (square of RMSE) of area measurement is 

proportional to the sum of squares of the distances between point’s 

neighbours (or sum of squared lengths of the diagonals). The small term 

independent of the summation index is significant only in case σ is 

comparable to the length of the diagonals (but still smaller – see next 

paragraph). 

Note that this expression does not take into account extremely thin polygons, 

where special provisions should be taken in the uncertainty analysis to rule 

out any combinations of point offsets that would produce invalid geometries, 

such as self-intersecting polygons, reversed orientations etc. 
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10.2 2. Area error produced by 
correlated offset from the true 
boundary 

When the measured polygon boundary is offset from the true boundary by 

distance ds (in this case the individual point measurements are not 

independent, but are strongly correlated), either to the outside or to the inside 

of the polygon, the offset of the measured area can be approximated with: 

Δ� � / ∗ ?5 � ��abc � �de� ∗ U ∗ ?5�. 
Here l denotes the length of the polygon boundary (including holes) while 

Nout and Nin denote the number of outer and inner rings, respectively. The 

first term clearly represents the (signed) area created by offsetting each line 

segment by ds, while the second term is produced by summation of the areas 

of circular sectors that fill in the gaps between the offset line segments (see 

Figure). 

 

For any closed ring, the sum of angles generating the circular sectors will be 

360°, making their total area equal the area of a full circle; for holes, the sum 

of angles will be negative. 

Integrating the expression for the area offset using a normal distribution for 

ds (with standard deviation σs) yields the total uncertainty of the area: 

�� � �5f/2 � 3	��out � �in�2	U2	�52	. 
Interestingly, this expression mostly depends on the total length of the 

polygon boundary (in case the polygon has exactly one hole, this is true 

exactly), and is only slightly influenced by the number of holes in the 

polygon (and outer rings for a multi-polygon). In this approximation, the 

measured area does not depend on the number of points digitized or the 

shape of the boundary at all. 

Note that while the approximation is quite correct for positive offsets and 

convex vertices, it is somewhat flawed in case of concave angles or negative 

offsets, as the area subtracted from the polygon is smaller than the area that 
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is covered by the two neighbouring rectangles (see Figure). This is hardly 

relevant for obtuse angles, but could be quite significant for acute angles.  
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11 ABOUT RMSE AND 95% 
CONFIDENCE INTERVAL IN THE 
NORMAL DISTRIBUTION 

Root-mean square error (RMSE or σ or standard deviation) is a property of 

the probability density function (PDF, also called error or probability 

distribution), that provides a measure of the distribution’s width or around its 

mean or average value (�̅). The following equations show the relations for 

the mean and RMSE, for continuous PDFs (left) and for a list of N imprecise 

measurements (right): 

�; � k �	PDF��� ?�∞
�∞ ; �; � 1�� �"

�
"�1

RMSE2 � k �� � �;�2	PDF��� ?�∞
�∞ ; RMSE � r1����" � �;�2�

"�1
				 

A normal distribution (also called Gaussian) centred at 0 is only 

parameterized with its width σ, which also coincides exactly with the 

distribution’s RMSE: 

�61s�/Ctu��, �� � 1√2U� ,R vw�xw ?�; 				EyzF*{|}~���� � � 

 

Figure 62: Normal distribution centred at 0 

It can be seen from the distribution, that the probability is highest around the 

mean (zero in the case of our figure), but there is also significant probability 

of a measured value being up to 3 σ away from the mean. The probability of 

a measured value falling up to one σ away from the mean can easily be 

calculated: 

S 1√2U� ,� �22�2 ?��
��

� 68.27% 
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This tells us that for a normal distribution, σ (or RMSE) is about equal to the 

68% confidence interval – about 68% of the measured values will be found 

within 1σ of the mean. The farther from the mean we go, higher percentage 

of the measured values will fall within the selected interval. If we would like 

to know how far from the mean we need to go to find 95% of all measured 

values, the result is easily found by integrating to find the area under the 

probability density function: 

S 1√2U� ,R vw�xw ?��
R� � 95% ⟹ � � 1.95996	� 

So, in a normal distribution, 95% of all values will fall in the interval whose 

boundaries are 1.96 σ away from the mean on either side. This is illustrated 

on the following diagram: 

 

Figure 63: 68% of all the values fall between –σ and σ, and 95% of all the values 

fall between -1.96 σ and 1.96 σ 
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12 STATISTICAL ANALYSIS OF 
SLOVENIAN LPIS DATA 

12.1 Area of an individual parcel 
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The height of the lines in an area-weighed distribution shows the total area 

of the parcels which fall into the bin, as opposed to the frequency 

distribution, which just shows the count. Area-weighed distribution is useful 

for establishing significance of certain kinds of samples (e.g. parcels with 

small boundary length) in terms of the sum of area they cover. 
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12.2 Length of the parcel’s boundary 
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12.3 Absolute uncertainty of the 
parcel’s Area 
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12.4 Relative uncertainty of the 
parcel’s Area 
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12.5 Effect on the total area of all 
parcels 

Total Area = ∑� 479 661 ha 

*Average Relative Uncertainty = AVG������ 5.81 % 

*Sum of Absolute Uncertainties =  ∑ ���5 7492 ha 

*…divided by total area = 
∑ ���5∑�  1.56 % 

Uncertainty of Total Area = ���� � �∑����� 

9.8 ha 

Relative Uncertainty of Total Area = ����∑:  

0.002% 

* items marked with asterisk are not relevant for the analysis of the total area 

12.6 Thresholds Applied to 95% 
Confidence Interval 

95% THRESHOLD 0..0.2 ha 0.2..0.5 ha >0.5ha 

>3% 35.83 % 10.22 % 1.38 % 
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>5% 24.02 % 3.02 % 0.18 % 

>7% 16.30 % 1.18 % 0.02 % 
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13 DIGITIZATION EXPERIMENT 

 

 

σA (σ0 = 
1m) [m2] 

 Type Area 
[ha] 

Bias 
Factor 

St. Dev. 
[m2] 

σ0
eff [m] <NPTS> 

SCALE .25 0.5 .25 0.5 .25 0.5 .25 0.5 

1 173 Straight .1 -0.2 0.9 53 97 .3 .6 6 8 

2 166 Curvy .1 -2.2 -1.1 84 81 .5 .5 6 7 

3 181 Curvy .1 1.6 1.8 79 103 .4 .6 7 6 

4 46 Straight .1 0.7 1.0 18 22 .4 .5 17 17 

5 45 Curvy .1 0.3 0.0 16 28 .3 .6 47 33 
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6 49 Straight .1 -1.1 -2.4 24 41 .5 .8 9 9 

7 *231 Fuzzy .1 3.1 3.3 222 209 *1.0 *.9 20 17 

8 *730 Fuzzy 1 1.3 1.7 627 535 *.9 *.7 24 23 

10 156 Straight 1 -0.6 -1.2 65 94 .4 .6 11 14 

11 143 Curvy 1 0.5 -0.4 72 92 .5 .6 83 65 

12 318 Straight 1 -0.3 0.2 75 164 .2 .5 7 8 

13 156 Straight 1 0.0 -0.9 41 105 .3 .7 110 85 

 

 


