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1 INTRODUCTION

We would like to make an estimation of area uncertainty based on an
uncertainty of a point. We will study different properties of polygons which
represent parcels in real world. For basic mathematical analysis we will first
study triangles because all other polygons can be studied as an analogy to
them, and they represent the simplest of all polygons.

The general idea is that the position of the vertices of the polygon is not
accurate but uncertain and distributed according to some distribution. To
make a good approximation of the real world uncertainty we picked two-
dimensional, radial symmetrical Gaussian distribution (normal distribution).
An example for three different triangles can be seen on Figure 1. The
uncertainty of any vertex is an input parameter and as output we will study
area uncertainty (that can depend on area or perimeter) and limits within our
model is a good description.

2 = 6 8
Figure 1: Different triangles and radial symmetrical normal distribution of
uncertainty of a point around vertices
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2 MATHEMATICAL BACKGROUND

(x3,¥3)

(xla yl) a (XZ’ )’2)

Figure 2: Triangle with sides and vertices

We will use some basic mathematical properties of a rectangle: area A

A=<[x1(V2 = ¥3) +x2(¥y3 = y1) + x3(V1 — ¥2)]

N =

and perimeter p

@ SINERGISE

(D

P=a+b+C=\/(x2_x1)2+(J’2_J’1)2+\/(x3_x2)2+(J’3_J’2)2+\/(x1_x3)2+(J’1_J’3)2 )

where X;, ¥; are the coordinates of vertices and a, b, c¢ are the sides of the
triangle as it can be seen on Figure 2.
Area uncertainty of a polygon can be defined analytically [1] as

N
1
2
Toin = ZZ [Ayiz_l,iﬂ + Axi—l,i+1] g
=1

where 0Oy is the uncertainty of a vertex (we assume that it is the same for all
vertices), and (X;, ;) are the exact values of the coordinates. In case of
triangle the above equation can be simplified into

N
1 2 2 2
OﬁN:ZZ[(}%_yl) +(x3—x1)2+(y1—y2) +(x1—x2)2+(y2—y3) +(x2—x3)2]a(2)
i=1

10

3)

“4)
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3 NUMERICAL ANALYSIS - STUDY OF
TRIANGLES

We want to compare analytical area uncertainty (4) with numerical area
uncertainty that we calculate from the distribution of vertices. For each
triangle we perform Monte Carlo simulation - we randomly pick a point
around each vertex according to normal distribution N times. For each index
7 we join the three randomly picked points into a triangle and calculate area
and after having N values for area we can calculate area distribution and area
uncertainty. We repeat this for M different triangles.

The interval where we pick points is limited to [0, «], 2= 1 and we choose N
= 105 and M = 1000 unless differently said. For vertex uncertainty o, we
choose ¢ /a=001.

The area distribution for one particular triangle can be seen on Figure 3. The
red line represents the average area value (4), which is the same as the area,
calculated from the exact value of vertices .4 [equation (1)]. On Figure 4 we
can see the distribution in a histogram form. We can see that the area
distribution is also a normal distribution. Numerical area uncertainty - oy, - can
be interpreted as the sdard deviation of this distribution.

St e *
. .
» o . ¢ 0
4.5F * 0 0 LA
. 0’03, IYON oot oo ¢ Q
Laohett SN At b ’.\"Q&Q\\' .,.‘,. g,
(N A () ' $90y
4 ' A

3.5 N s ”\ .
b’ :,“ 3': o, i&"”& LA “ L A :"
Yo % 0 L ee e H ‘,
200 400 600 800 1000

Figure 3: The distribution of numerically calculated areas around analytical area
(red line)
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120¢
100}
801
601
401

20¢

Figure 4: Histogram of the distribution - it is the normal distribution and the
standard deviation corresponds to analytical area uncertainty [equation (4)]

3.1 Area uncertainty dependency on
area

We would like to know what area uncertainty oy depends on. First we look at the
correlation between area uncertainty and area on Figure 5. We can see that
area uncertainty is limited downwards - when the area is large enough we
can not expect uncertainties to be small; but at one particular area we can
get many different values of uncertainties. On Figure 6 we see area
uncertainty squared - 0f - here too we can see the bottom line but nothing
specific can be said about area uncertainty at a given area.

It can be easily seen that we get the same result if one side of a triangle is
parallel to x axis. From now on we will study triangles, defined with
vertices {{0, 0}, {Xz’ 0}, {x3, y3}} unless otherwise stated. From Figures
Figure 5, Figure 6 and Figure 7 we can see that the area alone is not a very
good parameter when studying general shapes of triangles (or other
polygons). At the same area values we can get many different values of area
uncertainties. We can assume that the shape of the triangle could also be an
important property to study.

However, if we observe relative area uncertainty o7.4, we can see the potential
trend - Figure 7. For smaller areas we have big relative area uncertainty
(REA) and as the area gets larger the relative area uncertainty gets smaller.
This result will be studied in much more detail on the case of 3 rectangles

@ SINERGISE

12



Uncertainty of LPIS data or how to interpret ETS resulis

A
500 1000 1500 2000 2500 3000 350003

Figure 5: Area uncertainty dependency on area - GA(A)

2
of
7000 . .
6000#, 0’“ ‘0‘. .
5000 A ‘:$
*

A
500 1000 1500 2000 2500 3000 350003

. . 2
Figure 6: The square of area uncertainty dependency on area - 4 (A); not much
can be said about the correlation of A both, at one particular area we can have
many values of uncertainty

% SINERGISE
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o
A

®%e0e o A
500 1000 1500 2000 2500 3000 35006%

Figure 7: relative area uncertainty dependency on area is a power law. All
variables are represented in non-dimensional form

3.2 Area uncertainty dependency on
perimeter

On Figure 8 we can see the area uncertainty dependency on perimeter of
the triangle o(p). The trend is limited between two linear borders that can be
interpreted as two limit shapes of triangles - equilateral triangle and a
special type of isosceles triangle that has one side much shorter than the
other two sides.

Analytically we can see that from equation (4):

tateral = P < |32, _ P
o(equilateral) = 7 %= |38 00—2\500
i les) 2a? p? P
o(isosceles) = |—o0y = |—=0y=—=0

4 0 8 0 2\/7 0

where in the equilateral case we insert p = 3a and in the isosceles case p = 2a
(the short side being practically 0). The bottom border are the equilateral
triangles, the upper border the isosceles triangles.

‘fé SINERGISE
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p

5 10 15 20 25 30 oo

Figure 8: Area uncertainty dependency on perimeter: it is limited between two
linear borders, the upper representing the isosceles triangles and the lower
representing the equilateral triangles. All variables are represented in non-
dimensional form.

Next thing we can observe is how area uncertainty depends on area at a
constant perimeter. We believe this will give us some new information about
an impact of the shape of a triangle on area uncertainty. For one particular
triangle we can see the behaviour on Figure 9. The area uncertainty is
smallest at the biggest area, at small areas we have two borders: the upper
and the lower.

From all cases we can find out the ones with the smallest area uncertainty
and we can draw a few - Figure 10. We can see these are the triangles who
are shaped like equilateral triangles or are similar to equilateral triangles.
The same can be done for the case of small area and great area uncertainty -
we look at the triangles, represented by the points in the upper left part of
graph from the Figure 9. They are shown on Figure 11. As we see these are
the ones, similar to isosceles triangles with one side much shorter.

@ SINERGISE
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Figure 9: Area uncertainty dependency on area at constant perimeter, the smallest
uncertainty belongs to the triangles with the biggest area - these are the
equilateral-like ones; the biggest uncertainty belongs to another special type of
triangles - isosceles-like with very small angles between the longer sides.

Figure 10: Triangles with the smallest area uncertainty - the ones that lie on the
right side of the graph from Figure 6 - they are similar to equilateral triangles.

16
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0.5 1 1.5 2 2.5 3 3.5

Figure 11: Triangles with the biggest area uncertainty - they are similar to
isosceles triangles with one side much shorter than the other two.

We can observe the borders in more detail; for that purpose we do not
generate the triangles randomly but we observe only equilateral and
isosceles triangles - we want to learn more about convergence to analytical
borders. On Figure 12 we can see the convergence for an interval of small
ratios vertex uncertainty/side (90/a ~ 0.01). The special case of isosceles
triangle was generated with the ratio between the shorter and the longer side
k =10. We can see that the convergence is good.

Figures Figure 12, Figure 13, Figure 14: Convergence to the borders of
equilateral triangle (green line) and isosceles triangle (red line): the
dependency of the area uncertainty on perimeter - o(p); (Figure 12) small
ratio 0o/a ~ 0.01; (Figure 13) bigger ratio 0o/a ~ 0.1; (Figure 14) large
ratio 0o/a ~ 0.5; a is the size of the side.

@ SINERGISE
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| a

P
100 200 300 400 Oo
Figure 12: Small ratio 9o/a ~ 0.01
O
o3
' 10 20 30 40 o

Figure 13: Bigger ratio 9o/a ~ 0.1
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2 4 6 8 Oo
Figure 14: Large ratio 9o/a ~ 0.5

Now we enlarge the uncertainty of the vertices on ratio 0o/a ~ 0.1, — Figure
13. We can see that the equilateral triangles still converge, but the isosceles
are already under the limit of convergence. We can also see that for small
values of p/0y the numerical model isn’t good anymore. If we numerically
calculate uncertainty with statistics from Monte Carlo we can never get to
uncertainty that would equal to zero (even if the sides are very small and
analytically uncertainty limits to zero). That can be even better seen on
Figure 14, where the ratio 9o/a ~ 0.5 which is quite large.

We can get an analog information if we observe when numerically calculated
area (the average of all triangles obtained with Monte Carlo) starts to differ
from the analytical area. On Figure 15 we see this happens when the ratio
between perimeter and area is p/oy = 10,

@ SINERGISE
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0.4 \?3
g *
0.2 &“3‘ *
i 3N :
t‘*‘%’ *x

Y RTRAR
: , : ’a?.’t*t e B/ %  x P
2.5 5 7.5 TO° 19,58 w@b*,  Op

Py Kk K

Figure 15: The difference between numerically and analytically calculated area
that depends on perimeter

Practically this explains at which ratio p/dp we can no longer trust the
numerical calculation. The red points represent the equilateral case, the green
ones isosceles. We can see this happens at ratio p/do~10 - when uncertainty
of a vertex is one third of a side of a triangle (in case of equilateral triangle).
Based on this result we will only use sides greater than 30y in future
simulations.

3.3 Uncertainty of uncertainty

We would like to know how uncertain is area uncertainty. We know that area
uncertainty represents the standard deviation of the area distribution. Now
we want to see how the area uncertainty changes with the number of
triangles included in a Monte Carlo simulation.

On Figure 16 we can see how the average area uncertainty behaves as we
make M, the number of triangles, greater. When M is small, the distribution
is not well defined and area uncertainty changes its value a lot; when M gets
bigger, the numerically calculated uncertainty converges towards the
analytical value of area uncertainty [equation (4)]. On Figure 17 we can see
the uncertainty of the area uncertainty — this too at the small number of
triangles changes a lot but than converges. Another thing we can observe is
the distribution of the area uncertainty — Figure 18, which is also normal.
From all these we can conclude that the uncertainty of the area uncertainty is
a standard deviation of area uncertainty.

@ SINERGISE

20



Uncertainty of LPIS data or how to interpret ETS resulis

Q| o

30.7%
30.69¢

30.68¢k

*
30.67-§
K

*
¥

30.66} iiggh .
*F *

*
30.65*

30.64

: : : ' — M
200 400 600 800 1000
Figure 16: The convergence of area uncertainty towards the analytical value when

M — the number of triangles in Monte Carlo simulation — gets bigger
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Figure 17: The uncertainty of area uncertainty.

Both examples (Figures Figure 15 and Figure 16) are done for one randomly
chosen triangle.
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Figure 18: The distribution of area uncertainty is also a normal distribution and
there- fore the uncertainty of area uncertainty can be interpreted as a standard
deviation of uncertainty.

3.4 Buffer analysis

Until now we have analyzed area uncertainty based on vertex uncertainty.
Another perspective is the buffer analysis. For the width of the buffer we
take the same value as we usually took for the uncertainty of the vertex, o,
Inside and outside of the triangle we draw the buffer as it can be seen on Figure
19.

Oo

Oo

Figure 19: Triangle with an outer buffer (blue line) and inner buffer (green line)
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We will observe two variables: buffer area A, which is the area of the outer
and inner buffer, and fi/ area, that is the area of the triangle together with the
area of outer buffer, .4, We will compare buffer area .4; with area
uncertainty ¢, and full area 4. with the average area .4 of the triangle. To do
that we will observe the correlation between variables. For the calculation of
o, and A4 we still use Monte Carlo simulation - for each of the M triangles we do N
permutations while buffer is calculated only once for each of M triangles.

On Figures Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure
25 we can see the comparisons for three different ratios 0'0/ a. On Figure 20
we see the correlation between area uncertainty o, and buffer area A,
corr(o,, Ap) at O'O/ a=0.01. On Figure 22 we observe the same variable, just
with ratio 0'0/ a=0.1 and on Figure 24 %/ a=0.5. From these Figures we see
something similar to what we have seen on Figures Figure 8, Figure 12,
Figure 13 and Figure 14 - there exists a trend, limited between two limit
cases of triangles which are shaped as equilateral triangle and isosceles
triangle. At large ratios %/ a that correspond to large buffer width we can see
that we no longer have the linear trend.

On Figures Figure 21, Figure 23 and Figure 25 we see the correlation
between average triangle area .4 and full buffer area .4 . At small ratios q)/ a
the correlation is linear but when the ratio (and buffer width) gets bigger, we no
longer have the linear trend. That makes sense - when the buffer area is
comparable to triangle area, some small values of area can never be
obtained.

Figures Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25:
Correlation between area uncertainty o, and buffer area .4, — Figures Figure 20,
Figure 22 and Figure 24; correlation between full area 4 (outer buffer +
triangle) and average triangle area A — Figures Figure 21, Figure 23 and Figure
25; from top to bottom we change the ratio between the point uncertainty
and the side of a triangle - O;)/a=0.01 for Figures Figure 20 and Figure 21, 0 /a=
0.1 for Figures Figure 22 and Figure 23, o;)/ a=0.5 for Figures Figure 24 and Figure
25.
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Figure 24: Correlation between area uncertainty and buffer ~ Figure 25: Correlation between full area and average triangle
area; O—J“’ZO‘S area; GO/a:().5

From Figures 20, 21, 22, 23, 24 and 25 we can see that buffer is a variable,
correlated with variables we have used so far - average area .4 and area
uncertainty calculated from vertex uncertainty o, - but it does not give us
new information about the problem of area uncertainty.

3.5 Effective area uncertainty

Until now we have calculated area uncertainty as standard deviation - with an
iteration

Besides this uncertainty we can also look at the effective uncertainty - the only
difference is that now in iteration we do not observe the difference between
temporary and average area value but the differences between the temporary
and analytical area value.

On Figure 26 we can see 0, and analytically calculated uncertainty oy
[equation (4)]

- they both depend on the length of a side «. We study this on the case of
isosceles triangle with a constant perimeter =2 and ratio vertex
uncertainty/side OE)/ a=001. Analytical uncertainty is the concave curve, gyis the
one that differs from it (red points). The best similarity is at minimum of both
uncertainties, the worst is on the borders of the interval, at very small and
very big a/ o, This result is the same as things discovered so far - the most
problematic (the ones with the biggest area uncertainty) are those (isosceles)
triangles which have one side very short or very long - at « — 0 the ones that
can be seen on Figure 11, at « — p/2 the ones with a large obtuse angle between
equally long sides. The smallest uncertainty is at « = p/3, which means
equilateral triangle.

On Figure 27 we see the difference between numerically calculated area
from analytically calculated area, on Figure 28 we can see the absolute
difference between both areas A4 = Ay, —~1 - In this example too the biggest
difference is on the borders, in case of very small or very big angles at the top of
isosceles triangles.
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Figure 26: Effective uncertainty G (red curve) in comparison to analytically calculated
uncertainty O,y (black curve) for the case of isosceles triangles with a side a and constant
perimeter p/GO =200
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Figure 28: The difference between both areas.
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4 NUMERICAL ANALYSIS - STUDY OF
RECTANGLES

So far we have seen some properties about area uncertainty from the study of
triangles. Now we would like to compare some results with the study of
rectangles, first in general and then for some specific cases in more detail.
We use the exact some procedures and formulas for simulation.

On Figure 29 we can see how area uncertainty depends on area. We can see
that in general absolute area uncertainty grows with area and that at one
particular area we can have different values of area uncertainty. Figure 29 is
similar to Figure 5 - area uncertainty dependency on area for triangles.

A
1000 2000 3000 4000 50000%

Figure 29: Normalized area error (area uncertainty) dependency on normalized
area for a rectangle; o - area uncertainty, A -area, Oo - vertex uncertainty; In
general, area uncertainty grows with area; at one particular area A/0§ we still can
have different values of o and the small ones correspond to the most regular shape
- square like and the bigger ones correspond to elongated rectangles.

The same comparison can be done for relative area uncertainty o7/.4 - Figure
30. Here we can also see the power law trend. Figure 30 is similar to Figure 7.
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. . ‘ @ 4000 090 o0 A
1000 2000 3000 4000 500003

Figure 30: Relative area error dependency on normalized area for a rectangle; o -
area uncertainty, A -area, o - RMSE; for parcels, smaller than /1/002 = 1000 -
that is if . = Im, A = 1000m2 - relative area error is more than 10%. At one
particular normalized area A/ o_we still can have different values of 6/.A and the
small ones correspond to the most regular shape - square like.

Let's compare the dependency of area uncertainty on perimeter - Figure 31.
We again have two borders - the upper represents the elongated rectangle
and the lower represents the square - just like in the case of triangles where
the upper border was an equilateral triangle and the lower border was an
isosceles triangle. Figure 31 is similar to Figure 8.
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Figure 31: Absolute normalized area error (area uncertainty) dependency on
perimeter for a rectangle; © - area uncertainty, o -perimeter; o, - RMSE; o grows with
perimeter between two borders - the upper border corresponds to an elongated
rectangle and the lower to a square; all rectangles fall in between.

Another thing we compare is the behaviour of area uncertainty at constant
perimeter and different areas. In the case of triangles we have seen the shape
on Figure 9. We remember that the smallest area uncertainties corresponded
to the regular-like shape - equilateral triangle and the biggest uncertainties
corresponded to the most irregular shape - elongated isosceles triangles and
ones similar to them. Area uncertainty dependency on area at a constant
perimeter for rectangles can be seen on Figure 32. This time both graphs
are a bit different - on Figure 32 we have just one linear trend while on
Figure 9 we had a greater area - linear trend on top and a curve on bottom
and everything in between in the middle. For triangles the linear trend
corresponded to isosceles triangles with small angle between equal sides and
the curve corresponded to isosceles triangles with big angle between equal
sides. Here, in case of rectangles, we do not have two kinds of elongated
rectangles - rectangle can either be elongated with large ratio between both
sides or more square-like. That is why we have only one trend on Figure 32.

@ SINERGISE

29



@ SINERGISE

Uncertainty of LPIS data or how to interpret ETS resulis

S| a

200:“‘%.—

190 {bqh'

180t
170+
160t
150¢ ]
. A | ‘ .Y
2000 4000 6000 8000 10000 of

Figure 32: Absolute normalized area error (area uncertainty) dependency on area
at a constant perimeter for a rectangle; O - area uncertainty, A -area, o - RMSE; this
graph shows dependency on how elongated the rectangle is; all rectangles have
the same perimeter here and the ones with the smallest cand the biggest A are squares,
the ones with the biggest oand the smallest A are most elongated. Between these two limits is a
linear trend.

On Figure 33 we can see the relative area uncertainty that depends on area at
constant perimeter.

o
A —

2000 4000 6000 10000 03

Figure 33: The same as the above graph, just for relative area error - here we can't
see the linear trend, so for the study of behaviour at constant perimeter it's better
to observe the absolute area uncertainty.

To sum up, rectangles have the same or very similar area uncertainty
properties as triangles.
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5 38 CASES OF RECTANGLES

Now we want to study three special cases of rectangles which have the same
area but different shapes. So far we have observed variables in general, now
we want to do some number comparison. Our hypothesis is that area
uncertainty largely depends on the shape, not only on area (as we have seen
on Figures Figure 5, Figure 6, Figure 7, Figure 29 and Figure 30 we can
have many different values of area uncertainty at one particular area when
we observe triangles or rectangles in general).

Three cases are: /long rectangle, that has ratio between longer and shorter side
a/ b= 30, middle rectangle, with ratio a/b = 10 and square, with a = b.

b| | |

- - - - >
a

Figure 34: Three types of rectangles: (a) long rectangle, a/b = 30; (b) middle
rectangle a/b = 10 and (c) square with a = b. They all have the same area.

We will scan a whole interval of areas, from a few 10 m2 to two million m2.

The only limit is the any side of any rectangle should not be shorter than

RMSE or vertex uncertainty times three (3 O'O). To make information more readable

we show area scales in ha= 105m2.

We will study six types of uncertainties:

— DOP (digital ortophoto): the only parameter is uncertainty of a vertex,
RMSE. We estimate it on 1m. Set of parameters is (1m, 0, 0).

— DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused
by digitalization. Set of parameters is (Im, 0.4036 m, 0).

31



Uncertainty of LPIS data or how to interpret ETS resulis

— DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by
digitalization and uncertainty caused by interpretation. Set of parameters
is (1m, 0.4036 m, 1m).

— ETS1: comparison of two cases, first is DOP + DIG + INT with
parameters (Im, 0.4 m, 1m), second is DOP + DIG with parameters
(2.5m, 0.4 m, Om) - in the second case we take bigger RMSE.

— ETS2: comparison of two versions of the same case with parameters (1m,
0.4 m, 1m) for the first version and (1 m, 0.4 m, 0) for the second version.
Because DOP uncertainty is the same in both versions we don't use it in
calculation.

— OTS: comparison between DOP and on the spot control; first case with
parameters (Im, 0.4 m, 1m) and second case with parameters (0.1948 m,
0 m, O m).

In first three types (DOP, DOP + DIG and DOP+ DIG + INT) we have only
one set of parameters, in last three types we have two sets of parameters -
that is because in first three cases we calculate area uncertainty directly
while in last three cases we compare two digitalizations.

5.1 Model

Let's look at the six above types in more detail:

In the first case (DOP), to simulate the uncertainty of a vertex we take
coordinates of an exact polygon (rectangle) and perform Monte Carlo on
them. We calculate the area and the uncertainty of the area for each
polygon. The result is the distribution of area that has a Gaussian shape -
normal distribution. The average area is limiting towards the analytical
value of area [equation (1)] as N, the number of times Monte Carlo was
performed, grows.

For digitalization uncertainty (DIG) we used results from authors [2],
specifically the relationship between the distribution of error and the
turning angle. The distribution can be transformed into normal distribution
with o= 1.58 for angles 7/2, and for digitalization 1:1000 this gives 0.4036 m.
Because RMSE and digitalization uncertainty are not correlated, in the DOP
+ DIG <case we «can again wuse normal distribution with
o =+/1+ 040367 = 1.078.

Uncertainty caused by interpretation (INT): this time we estimate the error
around sides of a rectangle. Again, we randomly choose from normal
distribution with o= 1, but only once for all vertices. In this way we get an
envelope around a rectangle (inside or outside).

For ETS we calculate relative error: now we want to compare two
digitalizations. We run Monte Carlo twice and look at the difference between
both results. Average area and average uncertainty of area in both cases
should limit towards the same value (the exact value of the area) but if we
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look at the difference between digitalizations, we can get an estimate for
relative area error.

Mathematically, we define relative area error as

where 4 | is the area of the rectangle in the first case and A, is the area in the
second case.

In exact case, where Al = Az’ A = 0. But in Monte Carlo Alﬂ and Azﬂ for
the #-th try are probably not the same. We can calculate the uncertainty of
relative area error by making a total derivative of the equation (7).

Az_A1)_d(A2 1)_dA2 AZdA
— Y\ 7 1

dA=d ( = -—
Ay Ay A A?

From here, we get

1 2 A% 2
o(d) = A_§U (A2)+A_1;U (41
In other words, we have the probability distribution dP/ dA1 for the first
measurement and dP/dA2 for the second measurement; now we can
calculate the probability distribution of the relative difference between them:

_a
=

The standard deviation of the above distribution equals to the expression (9);
when we are performing Monte Carlo, we are calculating o directly but results
are the same as theory predicts.

For OTS we use the same procedure as for ETS.

5.2 Results

We will look at the results for our three rectangles from Figure 20. We
observe two things: how relative area error

REA =7/,

depends on area and how "2 ¢" interval depends on area."2 ¢" is actually
1.96 o (reproducibility limit). We can see area uncertainty - "¢" interval and
1.96 o - "2 ¢" interval on Figures Figure 35 and Figure 36 . "¢" interval
includes 67% of all cases - Figure 35 and "2 ¢" interval includes 95% of all
cases - Figure 36. The expression relative area error means the same as
relative area uncertainty.
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2000 2500 3000 3500 4000

Figure 35: Normal distribution of area for DOP type with "¢”" and "2 o"" interval
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Figure 36: Normal distribution of relative difference of areas for ETS type with "c”
and "2 o" interval

On Figure 37 we can see the shape of REA(A). It is a power law and
therefore hard to read for greater areas .4. Because of that we will use
logarithmic scales from now on, the results will be presented as linear
functions. In order to make results more readable some data is collected also
in tables.
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2w D ——

Figure 37: Linear scale example for DOP - for larger areas it is hard to read
details

5.3 DOP

On Figure 38 we see relative area error that depends on area. On Figure 39
we see the "2 ¢" interval. For small areas uncertainties are around 9% for
square, 20% for middle rectangle and more than 30% for long rectangle. For
"2 0" scenario they are exactly 1.96 times value at "¢" at the same area. We
can see that more elongated rectangles have much greater relative area error
than squares at the same area. In Table 1 (first column) are listed areas (in
ha) at REA = 3%, 5%, 7%. In Table 2 (first column) are listed areas where
1.96 6/ A is 3%, 5%, T%.
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Figure 38: DOP, REA; red line - long rectangle; green line - middle rectangle; blue
line - square.
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Figure 39: DOP, "2 o" interval; red line - long rectangle; green line - middle
rectangle; blue line — square.

5.4 DOP + DIG

On Figure 40 we see relative area error that depends on area for DOP + DIG
scenario.
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Figure 40: DOP + DIG, REA; red line

- long rectangle; green line
rectangle; blue line — square

- middle
On Figure 41 we see the "2 o' interval. In Table 1 (second column) are listed

areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (second column) are listed
areas where 1.96 o/.41is 3%, 5%, 7%
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Figure 41: DOP + DIG, "2 o interval; red line - long rectangle; green line -
middle rectangle; blue line — square

5.5 DOP + DIG + INT

On Figure 42 we see relative area error that depends on area for DOP + DIG
+ INT scenario. On Figure 43 we see the "2 ¢" interval. In Table 1 (third column)
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are listed areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (third column) are
listed areas where 1.96 ¢/.4is 3%, 5%, 7%.
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Figure 42: DOP + DIG + INT, REA; red line - long rectangle; green line - middle
rectangle; blue line — square.
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Figure 43: DOP + DIG + INT, "2 o interval; red line - long rectangle; green line
- middle rectangle; blue line — square.

% DOP DOP+DIG DOP+DIG+INT
3 022 0.26 1.16
5 0.08 0.09 0.42
7 0.04 0.04 0.21
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3 1.125 1.31 5.86
5 0.40 0.47 2.1
7 0.21 0.24 1.04
3 3.31 3.98 17.2
5 1.20 1.41 6.18
7 0.61 0.71 3.16

Table 1: Area that has bigger relative area uncertainty than the percent on the left
in ha = 105m2; Upper triplet: square; middle triplet: middle rectangle; lower
triplet: long rectangle

% DOP DOP+DIG DOP+DIG+INT
3 0.85 1.00 4.48

5 0.31 0.36 1.62

7 0.15 0.18 0.83

3 5.04 5.09 22.3

5 1.83 1.83 8.11

7 0.92 0.95 4.04

3 149 14.9 66.26

5 5.39 5.40 23.87

7 271 2.77 12.18

Table 2: Area that has bigger "2 o”' error than the percent on the left in ha = 105,22
for "2 o interval (95%); Upper triplet: square; middle triplet: middle rectangle;
lower triplet: long rectangle

5.6 ETS1

On Figure 44 we see relative area error that depends on area for ETS1
scenario. On Figure 45 we see the "2 o' interval. In Table 3 (upper half) are listed
areas (in ha) at REA = 3%, 5%, 7%. In Table 3 (bottom half) are listed areas
where 1.96 o/.Ais 3%, 5%, 1%.
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Figure 44: ETS1, REA; First (DOP, DIG, INT) = (Im, 0.4 m, Im), Second (DOP,
DIG, INT) = (2.5 m, 0.4m, 0)

% Square Middle Long
3 260 12.99 38.45
5 093 4.66 13.83
7 048 2.41 7.20
3 986 50 148.37
5 3.62 18.01 53.80
7 1.80 9.17 2.35

Table 3: Area that has bigger relative area uncertainty than the percent on the left
in ha = 1052 for ETS1 model. Upper half: REA - 1 ointerval (67%), lower half: "2 &
interval (95%)
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Figure 45: ETS1, "2 o" interval; First (DOP, DIG, INT) = (1m, 0.4 m, Im), Second
(DOP, DIG, INT) = (2.5 m, 0.4 m, 0)

5.7 ETS2

On Figure 46 we see relative area error that depends on area for ETS2
scenario. On Figure 47 we see the "2 ¢" interval. In Table 4 (upper half) are listed
areas (in ha) at REA = 3%, 5%, 7%. In Table 4 (bottom half) are listed areas
where 1.96 o/.Ais 3%, 5%, 1%.

% Square Middle Long
3 0.96 4.87 14.45
5 0.34 1.74 5.09

7 0417 0.88 2.61

3 3.68 18.86 55.73
5 1.31 6.77 20.04
7 0.69 3.34 10.09

Table 4: Area that has bigger relative area uncertainty than the percent on the left
in ha = 10512 for ETS2 scenario; upper half: REA - 1 ointerval (67%), lower half "2 6"
interval (95%).
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Figure 46: ETS2, REA; First (DOP, DIG, INT) = (Om, 0.4m, 1m), Second (DOP,
DIG, INT) = (Om, 0.4m, Om)
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Figure 47: ETS2, "2 o" interval; First (DOP, DIG, INT) = (Om, 0.4m, 1m), Second
(DOP, DIG, INT) = (Om, 0.4m, Om)

5.8 OTS

On Figure 48 we see relative area error that depends on area for OTS
scenario. On Figure 49 we see the "2 ¢ interval. In Table 5 (upper half) are listed
areas (in ha) at REA =3%, 5%, 7%. In Table 5 (bottom half) are listed areas
where 1.96 07/ A1s 3%, 5%, 1%.
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Figure 48: OTS, REA; First (DOP, DIG, INT) = (Im, 0.4m, 1m), Second (DOP,
DIG, INT) = (0.195m, 0.0, 0)
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Figure 49: OTS, "2 o interval; First (DOP, DIG, INT) = (Im, 0.4m, 1m), Second
(DOP, DIG, INT) = (0.195m, 0.0, 0)

% Square Middle Long
3 1.16 5.86 17.47
5 042 2.1 6.35
7 021 1.12 3.17
3 448 22.45 66.514
5 1.63 8.11 24.03
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7 0.83 4.04 12.29

Table 5: Area that has bigger relative area uncertainty than the percent on the left
in ha = 10572 for OTS scenario. Upper half: REA - 1 cinterval (67%), lower half: "2 6"
interval (95%);

5.9 Comparison of REA and "2 sigma”
interval

In previous tables we have compared areas at the same REAs or "2 0" intervals,
now lets fix the area and compare REAs and "2 6" intervals.

% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS

Square 0.137 0.14 0.32 0.48 0.29 0.32
Middle  0.31 0.32 0.73 1.09 0.65 0.74
Long 0.54 0.59 1.24 1.86 1.13 1.24
Square 1.00 1.07 2.28 3.38 2.06 2.29
Middle 2.26 2.43 5.03 7.53 4.68 5.05
Long 3.80 4.18 8.79 13.19  8.00 8.82
Square 1.41 1.54 3.17 4.74 2.88 3.19
Middle  3.16 3.41 717 10.71 6.57 7.19
Long 5.55 5.85 12.35 18.6 11.29 12.
Square 2.00 2.15 4.51 6.73 4.10 4.53
Middle  4.48 4.86 10.17 15.24  9.22 10.21
Long 7.65 8.41 17.5 26.11 15.88 17.54
Square 4.46 4.76 10.04 15.15  9.21 10.08
Middle 10.07 10.67 22.90 34.09 20.61 22.94
Long 17.23 18.65 39.24 59.09 36.10 39.52

Table 6: Comparison between different scenarios: REA at 100 ha (first - third line),
2ha (4th - 6th line), 1 ha (7th - 9th line), 0.5 ha(10th to 12th line), 0.1 ha (13th to
15th line)

% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS

Square 0.27 0.27 0.63 0.94 0.58 0.63
Middle  0.61 0.62 1.44 2.13 1.28 1.44
Long 1.06 1.15 2.43 3.66 2.22 2.45
Square 1.97 2.10 4.47 6.63 4.04 4.49
Middle  4.69 4.75 9.85 1476  9.18 9.89
Long  8.19 8.21 17.23 25.85 1567 17.28
Square 2.76 3.01 6.22 9.28 5.65 6.24
Middle  6.68 6.68 14.04 21.00 12.88 14.10
Long 11.39 11.47 24.20 36.46 22.14 24.30
Square  3.91 4.22 8.84 13.19  8.08 8.88
Middle  9.36 9.51 19.95 29.89 18.07 20.01
Long 16.07 16.49 34.30 51.18 31.13 34.38
Square 8.73 9.32 19.67 29.69 18.06 19.75
Middle 21.01 20.90 44.89 66.81 40.40 44.96
Long 35.97 36.55 76.9 115.81 70.76 77.46

44



Uncertainty of LPIS data or how to interpret ETS resulis

Table 7: Comparison between different scenarios: "2 o iterval at 100ha (first -
third line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and
0.1 ha (13th to 15th line)

6 FURTHER EXAMPLES

6.1 3 cases of rectangles - different
parameters

In previous chapter we have seen examples for all six types - DOP, DOP +
DIG, DOP + DIG + INT, ETS1, ETS2 and OTS for one set of parameters,
(DOP, DIG, INT) = (I m, 0.4 m, 1m) and some variations of that in ETSI,
ETS2 and OTS types. For each type there was a REA (or "1 ¢") graph and "2
o' graph; in addition, some typical area values at 3%, 5%, 7% and some typical
REA (relative area uncertainty) at A = 100 ha, 2 ha, 1 ha, 0.5 ha, 0.1 ha were
listed.

We would like to compare previous results with a little change in some
parameters - only for a few representative graphs and numbers.

— DOP: the only parameter is uncertainty of a vertex, RMSE = 0.2 m. Set
of parameters is (0.2 m, 0, 0).

— DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused
by digitalization. Set of parameters is (0.2 m, 0.4036 m, 0).

— DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by
digitalization and uncertainty caused by interpretation. Set of parameters
is (0.2 m, 0.4036 m, 1m).

— ETS1: comparison of two cases, first is DOP + DIG + INT with
parameters (0.2 m, 0.4 m, Im), second is DOP + DIG with parameters
(0.4m, 0.4036 m, 0) - in the second case we take bigger RMSE.

On Figure 50 we see the linear scale example for DOP. If we compare it to

Figure 37, we can see that REA at the same area is smaller in the case of
DOP = 0.2m.
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Figure 50: Linear scale example for DOP with RMSE = 0.2 m

This is even more obvious if we look at the logarithmic scale - Figure 51 for
DOP and compare it to DOP with RMSE = Im - Figure 38. For instance, at
A =0.1 ha, REA =1.5% (square) for RMSE = 0.2 m, while at RMSE = Im
REA =4.5% (square).

On Figure 51 we can see DOP + DIG, REA example for set of parameters
(DOP, DIG, INT) = (0.2 m, 0.4 m, 0), on Figure 53 is a DOP + DIG + INT,
REA example for set of parameters (DOP, DIG, INT) = (0.2 m, 0.4 m, 1m)
and on Figure 54 is a DOP + DIG + INT, "2 sigma" example for the same set
of parameters. On Figure 55 we can see ETS1 scenario, "2 o' example with
parameters (DOP, DIG, INT) = (0.2 m, 04 m, 1m) for the first case and (DOP, DIG,
INT) = (0.2 m, 0.4 m, 0) for the second case.

In Table 8 are listed relative area uncertainties for "2 ¢ interval for the above
examples.

A[hA]
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Figure 51: DOP, REA for RMSE = 0.2 m; red line - long rectangle, green line -
middle rectangle, blue line - square
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Figure 52: DOP + DIG, REA for RMSE = 0.2 m; red line - long rectangle, green
line - middle rectangle, blue line - square
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Figure 53: DOP + DIG + INT, REA for RMSE = 0.2 m, red line - long rectangle,
green line - middle rectangle, blue line - square
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Figure 54: DOP + DIG + INT, "2 o¢" interval for RMSE = 0.2 m; red line - long rectangle,
green line - middle rectangle, blue line — square
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Figure 55: ETS1, "2 o" interval for RMSE = 0.2 m (first case) and RMSE = 0.4 m (second
case); red line - long rectangle, green line - middle rectangle, blue line - square

% DOP DOP+DIG DOP+DIG+INT ETS1 % DOP

Square 0.05 0.12 0.56 0.57 Square 0.05
Middle 0.12 0.27 1.27 1.30 Middle 0.12
Long 0.21 0.48 2.18 2.23 Long 0.21
Square 0.39 0.87 3.9 4.02 Square 0.39
Middle 0.88 1.96 8.9 9.11  Middle 0.88
Long 1.51 3.41 15.25 1553 Long 1.51
Square 0.54 1.21 5.64 5.75 Square 0.54
Middle 1.22 2.77 12.64 12.87 Middle 1.22
Long 2.08 4.80 21.7 22.08 Long 2.08
Square 0.78 1.73 8.0 8.08 Square 0.78
Middle 1.76 3.93 18.1 18.43 Middle 1.76
Long 3.00 6.71 31.0 31.48 Long 3.00
Square 1.68 3.76 17 17.54 Square 1.68
Middle 3.79 8.62 38.30 39.52 Middle 3.79
Long 6.60 14.86 66.95 68.20 Long 6.60

Table 8: Comparison between different scenarios: "2 &" interval at 100ha (first -
third line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and
0.1 ha (13th to 15th line).

6.2 Shorter segments

So far we have always studied rectangles (or triangles) with fixed number of
vertices - 4 for rectangles or 3 for triangles. Does our simulation give
different results if we add vertices to polygons - in analogy to the real world,
is it better to make shorter segments?
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On Figure 56 we can see an example of a rectangle with four original
vertices (green points); on Figure 57 the red points are the added vertices.
Now we perform Monte Carlo on all vertices, the old ones and the new ones

and compare results.

Figure 56: The original rectangle with four vertices

Figure 57: Rectangle, transformed into polygon with shorter segments - the red
points are the added vertices

On Figures Figure 58, Figure 59 and Figure 60 we can see the comparison
between two absolute area uncertainties - the green one represents the
original rectangle and the red one the one with shorter segments. On Figure
58 the segment is relatively long in comparison to « (on interval [0, 4] we
pick side length) - /2 = 0.8 and both uncertainties are practically equal. On
Figure 59 the segment is middle length //z = 0.5 and we can see that
uncertainty is smaller. If the segment is much smaller than the side, like /2 =
0.1 on Figure 60 we can see that area uncertainty obviously falls
significantly. The segments also can not be too short - the same rule applies
to them, two vertices must be at least at 3 o;)distanoe.

Figures Figure 58, Figure 59 and Figure 60: Comparison of area uncertainty
for original rectangle (green points) and rectangle with segments (red
points); length of segments (Figure 58) //2 = 0.8, (Figure 59) //a = 0.5,
(Figure 60) //a = 0.1, where « is the length of interval from which we pick
side length.
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A
2000 4000 6000 8000 o%
Figure 58:1 /a = 0.8
A
2000 4000 6000 8000 o2

Figure 59:1/a = 0.5
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2000 4000 6000 8000 o2
Figure 60: 1/a = 0.1

Let's compare how shorter segments work for the 3 cases of rectangles. On
Figure 61 we can see the comparison for DOP with RMSE = 1 m and
segment length /= 30 m. The red line as usually represents long rectangle,
the green line middle rectangle and the blue line square. The orange line
represents long rectangle with segments, the turquoise line middle rectangle
with segments and the violet line square with segments.

First thing we can see is that REA for cases with segments is always smaller
or at least the same as REA for cases without segments. Not only that - when
we enlarge the sides of the rectangles, the length of the segment stays the
same - that is why lines that represent segments fall much faster that the
lines of the original rectangles. In case of square and middle rectangle we
can see that both cases stay the same until some area - that is until both sides
are shorter than the length of the segment.
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Figure 61: DOP, REA with RMSE = 1m and segment length | = 30 m; comparison
between the original rectangles and the ones with segments, red line - long
rectangle, green line - middle rectangle, blue line - square, orange line - long
rectangle with segments, turquoise line - middle rectangle with segments, violet
line - square with segments.

7 GONCLUSION

In this study of area uncertainty we have looked at some properties on which
area un- certainty depends on: area, perimeter, area at a constant perimeter
etc. For simulation we used Monte Carlo method. First, we have made a
general model for triangles where we learned that relative area uncertainty
(REA) gets smaller when area gets larger but on the other hand at one
particular area we can have many values of REA. This gave us the idea that
area uncertainty maybe also depends on shape, not only on area value. We
have looked at area uncertainty dependency on perimeter and from there we
have seen that area uncertainty is limited between two special types of
triangles: regular-like ones and isosceles-like ones with very small angles
between sides of equal length. We have also checked the limit cases where
convergence to these two borders is not true anymore and from there we
have learned that the length of the side of a polygon should not be smaller
than vertex uncertainty times three if we want our numerical model to give
proper results. We have compared numerically defined area uncertainty with
analytically and have concluded that they are most alike at regular shapes.
We have done some buffer analysis but that did not tell us anything new.

We have studied the same properties also for rectangles, the results were
comparable. Again we have seen how much area uncertainty (absolute and
relative) depends on shape. We have made a comparison for three cases of

Alha]
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rectangles and different input uncertain- ties - comparable to digital
ortophoto (DOP), digitalization uncertainty (DOP + DIG), interpretation
error(DOP + DIG + INT). Then we made three other types of calculating
uncertainty - ETS1, ETS2 and OTS where we compared two digitalizations
and observed the difference between them. For each of these types we have
compared "1 o" interval of distribution (equal to analytically calculated area
uncertainty) and "2 o©" interval (reproducibility limit). At the end we have
expanded basic model with adding vertices and results have shown we can
make area uncertainty smaller with this procedure.
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8 UNCERTAINTY COMPOSITION

In real-life scenarios, more than one process can influence the measurement
of a variable. Polygon area measurement, for example, is influenced by the
uncertainty in the reference layer (digital ortho-photo), uncertainty in
interpretation of the polygon border as well as uncertainty in the digitization.
To arrive at the estimate of the area uncertainty given the contributions of
different factors, we need to look at how the final error in area is constructed.
The offset of the measured area is the sum of offsets due to the different
contributions:

dA = dAl + dAZ + dA3

If each of the contributing errors is normally distributed around O with
RMSE of 6,, 6, and o3 respectively and if all the contributing errors are
independent, then the estimate for the resulting standard deviation is:

0 =+0,%+ 0,2 + 052

9 UNCERTAINTY OF RELATIVE
DIFFERENCE OF TWO
MEASUREMENTS

When we estimate the relative area error (RAE) from two measurements of
the same polygon, we have to take the uncertainties of both measurements
into account. The expression for RAE is straightforward:

_(a1-A2) A1

RAE A2 A2

Differentiating this expression with respect to both variables Al and A2
gives the following expression:

Al Al(dAl dAZ)
Al A2 )

1
dRAE =-—dAl ——dA2 = —
A2 A2? A2

Assuming small errors, we can set Al = A2 = A and write the expression for
the uncertainty of the relative difference as:

(%1)2 N (GAZ)Z _ou’ + 0,7

At/ " \az A

ORAE —
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10 UNCERTAINTY OF POLYGON AREA
DERIVED FROM POINT POSITION
ERROR

10.1 1. Area error produced by
independent point position error

The area of a polygon can be written as the sum of areas under individual
line segments:

N N
1 1
A= Ez("i“ —x) i1t yi) = Ez Xiv1 Vi — Xi Vi1
i=1

i=1

Note that the indices in the expression should be wrapped cyclically when
the last point of the polygon is reached. We can re-write this expression to
expose only the terms involving x; and y;:

1
A= E(---xiYi—l = Xi—1Yi + Xi1Yi — XiVig1 )

1
=5 Cooxi Uit = Vi) Vi (g1 — X21)--2)

Integration of the uncertain term for x; times its normal distribution (with oy;)
yields the average contribution of the term to the area, which equals the term
itself:

Xi

1 Ax?
f (x; + Ax;) (yi—l - yi+1) Ner - exp <— 5 _2> dAx; = x; (Vg = Yiiy)
i xi

1
—00

This tells us that the mean area of the polygon with uncertain vertices will be
the same as the area calculated from the mean vertex positions. In other
words, area calculated from the mean vertex positions is an unbiased
estimator of the true polygon area.

To arrive at an estimate of the standard deviation of the area measurement,
we have to integrate the square of the area difference between the uncertain
and the true polygon. We square the whole sum that is needed to compute the
area, but most of the terms involve Ax; or Ay; in the first power, and can be
removed due to the symmetry of the normal distribution:

( + (xi + Axi)(yi_l + Ayi_l Y1 T Ayi+1) - xi(yi_l - yi+1))2

=t (g — V) Ay H Ay )

Integral over Ax; then yields:
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[ee]

2 2 2 2 1 Axiz
A (Vi — Vi) H Ay, "+ Ay, )\/EU exp 052 dAx;
xi x

—00

_ .2 2 2 2
= O ((yi+1 - yi—l) +Ay, "+ Ay, )

The term with y coordinates of the neighbouring points represents the
independent contribution of the ordinate X; to the uncertainty of the polygon,
while the two terms containing the neighbouring points’ deltas describe the
effect of the interaction of the neighbouring points on the measured area
uncertainty.

All these terms will be further integrated to account for uncertainty in all
other points, and finally produce the following expression for the total area
uncertainty (factor 1/2 comes from the fact that the terms from the
expression in the sum will be included at other indices):

N
1 1
04 = 4 2 Oy’ <(yi+1 - yi—l)z + E(in—lz + in+12)>
i=1

2 2 1 2 2
+out | oy —x)" + E(Uxi—l +0yis1) |-
In case of isotropic error (o= o= 6;), this simplifies to:

UAZZ

N
2 z 2 2 2
Z o; ((yl‘+1 - yi—l) + (X1 —x-1)" + 0"+ 07 )

i=1

BN

In case all points have the same error (6;= 6) the expression becomes:
2 AN 2 2 2
04" = ZZ 20 + (yl-+1 - yi—l) + (g — x29)%
i=1

This tells us that the variance (square of RMSE) of area measurement is
proportional to the sum of squares of the distances between point’s
neighbours (or sum of squared lengths of the diagonals). The small term
independent of the summation index is significant only in case o is
comparable to the length of the diagonals (but still smaller — see next
paragraph).

Note that this expression does not take into account extremely thin polygons,
where special provisions should be taken in the uncertainty analysis to rule
out any combinations of point offsets that would produce invalid geometries,
such as self-intersecting polygons, reversed orientations etc.
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10.2 2. Area error produced by
correlated offset from the true
boundary

When the measured polygon boundary is offset from the true boundary by
distance ds (in this case the individual point measurements are not
independent, but are strongly correlated), either to the outside or to the inside
of the polygon, the offset of the measured area can be approximated with:

AA =1 xds + (Nyy — Nip) * 7 * ds?.

Here / denotes the length of the polygon boundary (including holes) while
Ny and N;, denote the number of outer and inner rings, respectively. The
first term clearly represents the (signed) area created by offsetting each line
segment by ds, while the second term is produced by summation of the areas
of circular sectors that fill in the gaps between the offset line segments (see
Figure).

For any closed ring, the sum of angles generating the circular sectors will be
360°, making their total area equal the area of a full circle; for holes, the sum
of angles will be negative.

Integrating the expression for the area offset using a normal distribution for
ds (with standard deviation o) yields the total uncertainty of the area:

4= as\/l2 +3(Nyy — N2 %02,

Interestingly, this expression mostly depends on the total length of the
polygon boundary (in case the polygon has exactly one hole, this is true
exactly), and is only slightly influenced by the number of holes in the
polygon (and outer rings for a multi-polygon). In this approximation, the
measured area does not depend on the number of points digitized or the
shape of the boundary at all.

Note that while the approximation is quite correct for positive offsets and
convex vertices, it is somewhat flawed in case of concave angles or negative
offsets, as the area subtracted from the polygon is smaller than the area that
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is covered by the two neighbouring rectangles (see Figure). This is hardly
relevant for obtuse angles, but could be quite significant for acute angles.
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11 ABOUT RMSE AND 95%
CONFIDENCE INTERVAL IN THE
NORMAL DISTRIBUTION

Root-mean square error (RMSE or ¢ or standard deviation) is a property of
the probability density function (PDF, also called error or probability
distribution), that provides a measure of the distribution’s width or around its
mean or average value (X). The following equations show the relations for
the mean and RMSE, for continuous PDFs (left) and for a list of N imprecise
measurements (right):

?czf x PDF(x) dx; xX=—

RMSE? = f (x —x)? PDF(x) dx; RMSE =

A normal distribution (also called Gaussian) centred at O is only
parameterized with its width o, which also coincides exactly with the
distribution’s RMSE:

x2

NormalPDF (x,0) = e 207 dx; RMSEpormaippr = 0

2no

L
9 r

-3c =20 - 0 o 20
Figure 62: Normal distribution centred at 0

It can be seen from the distribution, that the probability is highest around the
mean (zero in the case of our figure), but there is also significant probability
of a measured value being up to 3 ¢ away from the mean. The probability of
a measured value falling up to one ¢ away from the mean can easily be
calculated:

T
e 20° dx = 68.27%
2mo

g
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This tells us that for a normal distribution, ¢ (or RMSE) is about equal to the
68% confidence interval — about 68% of the measured values will be found
within 1o of the mean. The farther from the mean we go, higher percentage
of the measured values will fall within the selected interval. If we would like
to know how far from the mean we need to go to find 95% of all measured
values, the result is easily found by integrating to find the area under the
probability density function:

c
1 _x2
e 202dx =95% = ¢ = 1.95996 ¢
f \V2mo °

—-C

So, in a normal distribution, 95% of all values will fall in the interval whose
boundaries are 1.96 ¢ away from the mean on either side. This is illustrated
on the following diagram:

95%

68%

=3 20 - 0 o 2a 3o

Figure 63: 68% of all the values fall between —a and o, and 95% of all the values
fall between -1.96 ¢ and 1.96 ¢
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12 STATISTICAL ANALYSIS OF
SLOVENIAN LPIS DATA

12.1 Area of an individual parcel

Distribution of Parcel Area

Distribution of Parcel Area (zoomed in)

Cumutative Distribution of Parcel Area
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Area—weighed Distribution of Parcel Area
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Area—weighed Cumulative Distribution of Parcel Area
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The height of the lines in an area-weighed distribution shows the total area
of the parcels which fall into the bin, as opposed to the frequency
distribution, which just shows the count. Area-weighed distribution is useful
for establishing significance of certain kinds of samples (e.g. parcels with
small boundary length) in terms of the sum of area they cover.
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12.2 Length of the parcel’s boundary

Distribution of Parcel Boundary Length

N

35000 |

25000 |

Aigterval 4]
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Area-weighed Cumulative Distribution of Parcel Boundary Length

1000 1500 2000

12.3 Absolute uncertainty of the
parcel’'s Area

Distribution of Absolute Parcel Area Uncertainty (RMSEp=1)

) oy
200 300 400 500

Cumulative Distribution of Absolute Parcel Area Uncertainty (RMSEp=1)
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Area—Weighed Distribution of Absolute Parcel Area Uncertainty (RMSE,=1)
15x108F

10x108

5.0x107

200 300

Area—Weighed Cumulative Distribution of Absolute Parcel Area Uncertainty (RMSEp=1)
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12.4 Relative uncertainty of the
parcel’'s Area

Distribution of Relative Parcel Area Uncertainty (RMSE=1)

4 6

Cumulative Distribution of Relative Parcel Area Uncertainty (RMSEp=1)
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Area—Weighed distribution of Relative Parcel Area Uncertainty (RMSE=1)
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Area—Weighed Cumulative Distribution of Relative Parcel Area Uncertainty (RMSEp=1)

P——

12.5 Effect on the total area of all

parcels
Total Area=) A 479 661 ha
*Average Relative Uncertainty =|5.81%
AVG(Jrel)
*Sum of Absolute Uncertainties = | 7492 ha
Z O abs
*...divided by total area = % 1.56 %
Uncertainty of Total Area =|9.8ha

_ 2
Oror =\ 2 Oaps

Relative Uncertainty of Total Area = | 0.002%

oT0T

YA

* items marked with asterisk are not relevant for the analysis of the total area

12.6 Thresholds Applied to 95%
Confidence Interval

95% THRESHOLD | 0..0.2 ha 0.2..0.5 ha >0.5ha

>3% 35.83 % 10.22 % 1.38 %
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>5%

24.02 %

3.02 %

0.18 %

>7%

16.30 %

1.18 %

0.02 %
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13 DIGITIZATION EXPERIMENT

oa(co= Type Area |Bias St. Dev. | 0,°" [m] <Nprs>
1m) [m?] [ha] | Factor | [m?
SCALE 25 05| .25 0.5 25 05 25 0.5
1 173  Straight 11-0.2 0.9 53 97 3 .6 6 8
2 166 Curvy d1-22 -1.1 84 81 .5 .5 6 7
3 181 Curvy d]1 16 1.8 79 103 4 .6 7 6
4 46  Straight d)1 07 1.0 18 22 i .5 17 17
5 45 Curvy 11 03 0.0 16 28 3 .6 47 33
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